5 resultados para Computer-generated 3D imaging

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

From Bush’s September 20, 2001 “War on Terror” speech to Congress to President-Elect Barack Obama’s acceptance speech on November 4, 2008, the U.S. Army produced visual recruitment material that addressed the concerns of falling enlistment numbers—due to the prolonged and difficult war in Iraq—with quickly-evolving and compelling rhetorical appeals: from the introduction of an “Army of One” (2001) to “Army Strong” (2006); from messages focused on education and individual identity to high-energy adventure and simulated combat scenarios, distributed through everything from printed posters and music videos to first-person tactical-shooter video games. These highly polished, professional visual appeals introduced to the American public during a time of an unpopular war fought by volunteers provide rich subject matter for research and analysis. This dissertation takes a multidisciplinary approach to the visual media utilized as part of the Army’s recruitment efforts during the War on Terror, focusing on American myths—as defined by Barthes—and how these myths are both revealed and reinforced through design across media platforms. Placing each selection in its historical context, this dissertation analyzes how printed materials changed as the War on Terror continued. It examines the television ad that introduced “Army Strong” to the American public, considering how the combination of moving image, text, and music structure the message and the way we receive it. This dissertation also analyzes the video game America’s Army, focusing on how the interaction of the human player and the computer-generated player combine to enhance the persuasive qualities of the recruitment message. Each chapter discusses how the design of the particular medium facilitates engagement/interactivity of the viewer. The conclusion considers what recruitment material produced during this time period suggests about the persuasive strategies of different media and how they create distinct relationships with their spectators. It also addresses how theoretical frameworks and critical concepts used by a variety of disciplines can be combined to analyze recruitment media utilizing a Selber inspired three literacy framework (functional, critical, rhetorical) and how this framework can contribute to the multimodal classroom by allowing instructors and students to do a comparative analysis of multiple forms of visual media with similar content.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Though 3D computer graphics has seen tremendous advancement in the past two decades, most available mechanisms for computer interaction in 3D are high cost and targeted for industry and virtual reality applications. Recent advances in Micro-Electro-Mechanical-System (MEMS) devices have brought forth a variety of new low-cost, low-power, miniature sensors with high accuracy, which are well suited for hand-held devices. In this work a novel design for a 3D computer game controller using inertial sensors is proposed, and a prototype device based on this design is implemented. The design incorporates MEMS accelerometers and gyroscopes from Analog Devices to measure the three components of the acceleration and angular velocity. From these sensor readings, the position and orientation of the hand-held compartment can be calculated using numerical methods. The implemented prototype is utilizes a USB 2.0 compliant interface for power and communication with the host system. A Microchip dsPIC microcontroller is used in the design. This microcontroller integrates the analog to digital converters, the program memory flash, as well as the core processor, on a single integrated circuit. A PC running Microsoft Windows operating system is used as the host machine. Prototype firmware for the microcontroller is developed and tested to establish the communication between the design and the host, and perform the data acquisition and initial filtering of the sensor data. A PC front-end application with a graphical interface is developed to communicate with the device, and allow real-time visualization of the acquired data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Direct imaging of extra-solar planets in the visible and infrared region has generated great interest among scientists and the general public as well. However, this is a challenging problem. Diffculties of detecting a planet (faint source) are caused, mostly, by two factors: sidelobes caused by starlight diffraction from the edge of the pupil and the randomly scattered starlight caused by the phase errors from the imperfections in the optical system. While the latter diffculty can be corrected by high density active deformable mirrors with advanced phase sensing and control technology, the optimized strategy for suppressing the diffraction sidelobes is still an open question. In this thesis, I present a new approach to the sidelobe reduction problem: pupil phase apodization. It is based on a discovery that an anti-symmetric spatial phase modulation pattern imposed over a pupil or a relay plane causes diffracted starlight suppression sufficient for imaging of extra-solar planets. Numerical simulations with specific square pupil (side D) phase functions, such as ... demonstrate annulling in at least one quadrant of the diffraction plane to the contrast level of better than 10^12 with an inner working angle down to 3.5L/D (with a = 3 and e = 10^3). Furthermore, our computer experiments show that phase apodization remains effective throughout a broad spectrum (60% of the central wavelength) covering the entire visible light range. In addition to the specific phase functions that can yield deep sidelobe reduction on one quadrant, we also found that a modified Gerchberg-Saxton algorithm can help to find small sized (101 x 101 element) discrete phase functions if regional sidelobe reduction is desired. Our simulation shows that a 101x101 segmented but gapless active mirror can also generate a dark region with Inner Working Distance about 2.8L/D in one quadrant. Phase-only modulation has the additional appeal of potential implementation via active segmented or deformable mirrors, thereby combining compensation of random phase aberrations and diffraction halo removal in a single optical element.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric turbulence near the ground severely limits the quality of imagery acquired over long horizontal paths. In defense, surveillance, and border security applications, there is interest in deploying man-portable, embedded systems incorporating image reconstruction methods to compensate turbulence effects. While many image reconstruction methods have been proposed, their suitability for use in man-portable embedded systems is uncertain. To be effective, these systems must operate over significant variations in turbulence conditions while subject to other variations due to operation by novice users. Systems that meet these requirements and are otherwise designed to be immune to the factors that cause variation in performance are considered robust. In addition robustness in design, the portable nature of these systems implies a preference for systems with a minimum level of computational complexity. Speckle imaging methods have recently been proposed as being well suited for use in man-portable horizontal imagers. In this work, the robustness of speckle imaging methods is established by identifying a subset of design parameters that provide immunity to the expected variations in operating conditions while minimizing the computation time necessary for image recovery. Design parameters are selected by parametric evaluation of system performance as factors external to the system are varied. The precise control necessary for such an evaluation is made possible using image sets of turbulence degraded imagery developed using a novel technique for simulating anisoplanatic image formation over long horizontal paths. System performance is statistically evaluated over multiple reconstruction using the Mean Squared Error (MSE) to evaluate reconstruction quality. In addition to more general design parameters, the relative performance the bispectrum and the Knox-Thompson phase recovery methods is also compared. As an outcome of this work it can be concluded that speckle-imaging techniques are robust to the variation in turbulence conditions and user controlled parameters expected when operating during the day over long horizontal paths. Speckle imaging systems that incorporate 15 or more image frames and 4 estimates of the object phase per reconstruction provide up to 45% reduction in MSE and 68% reduction in the deviation. In addition, Knox-Thompson phase recover method is shown to produce images in half the time required by the bispectrum. The quality of images reconstructed using Knox-Thompson and bispectrum methods are also found to be nearly identical. Finally, it is shown that certain blind image quality metrics can be used in place of the MSE to evaluate quality in field scenarios. Using blind metrics rather depending on user estimates allows for reconstruction quality that differs from the minimum MSE by as little as 1%, significantly reducing the deviation in performance due to user action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this research was to develop a working physical model of the focused plenoptic camera and develop software that can process the measured image intensity, reconstruct this into a full resolution image, and to develop a depth map from its corresponding rendered image. The plenoptic camera is a specialized imaging system designed to acquire spatial, angular, and depth information in a single intensity measurement. This camera can also computationally refocus an image by adjusting the patch size used to reconstruct the image. The published methods have been vague and conflicting, so the motivation behind this research is to decipher the work that has been done in order to develop a working proof-of-concept model. This thesis outlines the theory behind the plenoptic camera operation and shows how the measured intensity from the image sensor can be turned into a full resolution rendered image with its corresponding depth map. The depth map can be created by a cross-correlation of adjacent sub-images created by the microlenslet array (MLA.) The full resolution image reconstruction can be done by taking a patch from each MLA sub-image and piecing them together like a puzzle. The patch size determines what object plane will be in-focus. This thesis also goes through a very rigorous explanation of the design constraints involved with building a plenoptic camera. Plenoptic camera data from Adobe © was used to help with the development of the algorithms written to create a rendered image and its depth map. Finally, using the algorithms developed from these tests and the knowledge for developing the plenoptic camera, a working experimental system was built, which successfully generated a rendered image and its corresponding depth map.