7 resultados para Computer Aided Engineering and Design

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional engineering design methods are based on Simon's (1969) use of the concept function, and as such collectively suffer from both theoretical and practical shortcomings. Researchers in the field of affordance-based design have borrowed from ecological psychology in an attempt to address the blind spots of function-based design, developing alternative ontologies and design processes. This dissertation presents function and affordance theory as both compatible and complimentary. We first present a hybrid approach to design for technology change, followed by a reconciliation and integration of function and affordance ontologies for use in design. We explore the integration of a standard function-based design method with an affordance-based design method, and demonstrate how affordance theory can guide the early application of function-based design. Finally, we discuss the practical and philosophical ramifications of embracing affordance theory's roots in ecology and ecological psychology, and explore the insights and opportunities made possible by an ecological approach to engineering design. The primary contribution of this research is the development of an integrated ontology for describing and designing technological systems using both function- and affordance-based methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To tackle the challenges at circuit level and system level VLSI and embedded system design, this dissertation proposes various novel algorithms to explore the efficient solutions. At the circuit level, a new reliability-driven minimum cost Steiner routing and layer assignment scheme is proposed, and the first transceiver insertion algorithmic framework for the optical interconnect is proposed. At the system level, a reliability-driven task scheduling scheme for multiprocessor real-time embedded systems, which optimizes system energy consumption under stochastic fault occurrences, is proposed. The embedded system design is also widely used in the smart home area for improving health, wellbeing and quality of life. The proposed scheduling scheme for multiprocessor embedded systems is hence extended to handle the energy consumption scheduling issues for smart homes. The extended scheme can arrange the household appliances for operation to minimize monetary expense of a customer based on the time-varying pricing model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the past sixty years, waveguide slot radiator arrays have played a critical role in microwave radar and communication systems. They feature a well-characterized antenna element capable of direct integration into a low-loss feed structure with highly developed and inexpensive manufacturing processes. Waveguide slot radiators comprise some of the highest performance—in terms of side-lobe-level, efficiency, etc. — antenna arrays ever constructed. A wealth of information is available in the open literature regarding design procedures for linearly polarized waveguide slots. By contrast, despite their presence in some of the earliest published reports, little has been presented to date on array designs for circularly polarized (CP) waveguide slots. Moreover, that which has been presented features a classic traveling wave, efficiency-reducing beam tilt. This work proposes a unique CP waveguide slot architecture which mitigates these problems and a thorough design procedure employing widely available, modern computational tools. The proposed array topology features simultaneous dual-CP operation with grating-lobe-free, broadside radiation, high aperture efficiency, and good return loss. A traditional X-Slot CP element is employed with the inclusion of a slow wave structure passive phase shifter to ensure broadside radiation without the need for performance-limiting dielectric loading. It is anticipated this technology will be advantageous for upcoming polarimetric radar and Ka-band SatCom systems. The presented design methodology represents a philosophical shift away from traditional waveguide slot radiator design practices. Rather than providing design curves and/or analytical expressions for equivalent circuit models, simple first-order design rules – generated via parametric studies — are presented with the understanding that device optimization and design will be carried out computationally. A unit-cell, S-parameter based approach provides a sufficient reduction of complexity to permit efficient, accurate device design with attention to realistic, application-specific mechanical tolerances. A transparent, start-to-finish example of the design procedure for a linear sub-array at X-Band is presented. Both unit cell and array performance is calculated via finite element method simulations. Results are confirmed via good agreement with finite difference, time domain calculations. Array performance exhibiting grating-lobe-free, broadside-scanned, dual-CP radiation with better than 20 dB return loss and over 75% aperture efficiency is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report provides an analysis of the thermal performance and emissions characteristics of improved biomass stoves constructed using earthen materials. Commonly referred to as mud stoves, this type of improved stove incorporates high clay content soil with an organic binder in the construction of its combustion chamber and body. When large quantities of the mud material are used to construct the stove body, the stove does not offer significant improvements in fuel economy or air quality relative to traditional open fire cooking. This is partly because a significant amount of heat is absorbed by the mass of the stove reducing combustion efficiency and heat transfer to the cook pot. An analysis of the thermal and mechanical properties of stove materials was also performed. A material mixture containing a one‐to‐one ratio by volume of high content clay soil and straw was found to have thermal properties comparable to fired ceramics used in more advanced improved stove designs. Feedback from mud stove users in Mauritania and Mali, West Africa was also collected during implementation. Suggestions for stove design improvements were developed based on this information and the data collected in the performance, emissions, and material properties analysis. Design suggestions include reducing stove height to accommodate user cooking preferences and limiting overall stove mass to reduce heat loss to the stove body.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this research is to provide a framework for vibro-acoustical analysis and design of a multiple-layer constrained damping structure. The existing research on damping and viscoelastic damping mechanism is limited to the following four mainstream approaches: modeling techniques of damping treatments/materials; control through the electrical-mechanical effect using the piezoelectric layer; optimization by adjusting the parameters of the structure to meet the design requirements; and identification of the damping material’s properties through the response of the structure. This research proposes a systematic design methodology for the multiple-layer constrained damping beam giving consideration to vibro-acoustics. A modeling technique to study the vibro-acoustics of multiple-layered viscoelastic laminated beams using the Biot damping model is presented using a hybrid numerical model. The boundary element method (BEM) is used to model the acoustical cavity whereas the Finite Element Method (FEM) is the basis for vibration analysis of the multiple-layered beam structure. Through the proposed procedure, the analysis can easily be extended to other complex geometry with arbitrary boundary conditions. The nonlinear behavior of viscoelastic damping materials is represented by the Biot damping model taking into account the effects of frequency, temperature and different damping materials for individual layers. A curve-fitting procedure used to obtain the Biot constants for different damping materials for each temperature is explained. The results from structural vibration analysis for selected beams agree with published closed-form results and results for the radiated noise for a sample beam structure obtained using a commercial BEM software is compared with the acoustical results of the same beam with using the Biot damping model. The extension of the Biot damping model is demonstrated to study MDOF (Multiple Degrees of Freedom) dynamics equations of a discrete system in order to introduce different types of viscoelastic damping materials. The mechanical properties of viscoelastic damping materials such as shear modulus and loss factor change with respect to different ambient temperatures and frequencies. The application of multiple-layer treatment increases the damping characteristic of the structure significantly and thus helps to attenuate the vibration and noise for a broad range of frequency and temperature. The main contributions of this dissertation include the following three major tasks: 1) Study of the viscoelastic damping mechanism and the dynamics equation of a multilayer damped system incorporating the Biot damping model. 2) Building the Finite Element Method (FEM) model of the multiple-layer constrained viscoelastic damping beam and conducting the vibration analysis. 3) Extending the vibration problem to the Boundary Element Method (BEM) based acoustical problem and comparing the results with commercial simulation software.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report summarizes the work done for the Vehicle Powertrain Modeling and Design Problem Proposal portion of the EcoCAR3 proposal as specified in the Request for Proposal from Argonne National Laboratory. The results of the modeling exercises presented in the proposal showed that: An average conventional vehicle powered by a combustion engine could not meet the energy consumption target when the engine was sized to meet the acceleration target, due the relatively low thermal efficiency of the spark ignition engine. A battery electric vehicle could not meet the required range target of 320 km while keeping the vehicle weight below the gross vehicle weight rating of 2000 kg. This was due to the low energy density of the batteries which necessitated a large, and heavy, battery pack to provide enough energy to meet the range target. A series hybrid electric vehicle has the potential to meet the acceleration and energy consumption parameters when the components are optimally sized. A parallel hybrid electric vehicle has less energy conversion losses than a series hybrid electric vehicle which results in greater overall efficiency, lower energy consumption, and less emissions. For EcoCAR3, Michigan Tech proposes to develop a plug-in parallel hybrid vehicle (PPHEV) powered by a small Diesel engine operating on B20 Bio-Diesel fuel. This architecture was chosen over other options due to its compact design, lower cost, and its ability to provide performance levels and energy efficiency that meet or exceed the design targets. While this powertrain configuration requires a more complex control system and strategy than others, the student engineering team at Michigan Tech has significant recent experience with this architecture and has confidence that it will perform well in the events planned for the EcoCAR3 competition.