10 resultados para Compressed natural gas.

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The U.S. natural gas industry has changed because of the recent ability to produce natural gas from unconventional shale deposits. One of the largest and most important deposits is the Marcellus Shale. Hydraulic fracturing and horizontal drilling have allowed for the technical feasibility of production, but concerns exist regarding the economics of shale gas production. These concerns are related to limited production and economic data for shale gas wells, declines in the rates of production, falling natural gas prices, oversupply issues coupled with slow growth in U.S. natural gas demand, and rising production costs. An attempt to determine profitability was done through the economic analysis of an average shale gas well using data that is representative of natural gas production from 2009 to 2011 in the Marcellus Shale. Despite the adverse conditions facing the shale gas industry it is concluded from the results of this analysis that a shale gas well in the Marcellus Shale is profitable based on NPV, IRR and breakeven price calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis analyzes the domestic shortage in the Chinese natural gas market. Both the domestic supply and demand of natural gas are growing fast in China. However, the supply cannot catch up with the demand. Under the present pricing mechanism, the Chinese natural gas market cannot get the equilibrium by itself. Expensive imports are inadequate to fill the increasing gap between the domestic demand and supply. Therefore, the shortage problem occurs. Since the energy gap can result in the arrested development of economics, the shortage problem need to be solved. This thesis gives three suggestions to solve the problem: the use of Unconventional Gas, Natural Gas Storage and Pricing Reform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to design, develop and integrate a Compressed Natural Gas (CNG) tank that will have a conformable shape for efficient storage in a light-duty pick-up truck. The CNG tank will be a simple rectangular box geometry to demonstrate capability of non-cylindrical shapes. Using CAD drawings of the truck, a conformable tank will be designed to fit under the pick-up bed. The intent of the non-cylindrical CNG tank is to demonstrate improvement in size over the current solution, which is a large cylinder in the box of a pick-up truck. The geometry of the tank’s features is critical to its size and strength. The optimized tank design will be simulated with Finite Element Analysis (FEA) to determine critical stress regions, and appropriate design changes will be made to reduce stress concentration. Following the American National Standard Institute (ANSI) guide, different aluminum alloys will be optimized to obtain the best possible result for the CNG tank.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis focuses on the impact of the American shale gas boom on the European natural gas market. The study presents different tests in order to analyze the dynamics of natural gas prices in the U.S., U.K. and German natural gas market. The question of cointegration between these different markets are analyzed using several tests. More specifically, the ADF tests for the presence of a unit root. The error correction model test and the Johansen cointegration procedure are applied in order to accept or reject the hypothesis of an integrated market. The results suggest no evidence of cointegration between these markets. There currently is no evidence of an impact of the U.S. shale gas boom on the European market.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Typical internal combustion engines lose about 75% of the fuel energy through the engine coolant, exhaust and surface radiation. Most of the heat generated comes from converting the chemical energy in the fuel to mechanical energy and in turn thermal energy is produced. In general, the thermal energy is unutilized and thus wasted. This report describes the analysis of a novel waste heat recovery (WHR) system that operates on a Rankine cycle. This novel WHR system consists of a second piston within the existing piston to reduce losses associated with compression and exhaust strokes in a four-cycle engine. The wasted thermal energy recovered from the coolant and exhaust systems generate a high temperature and high pressure working fluid which is used to power the modified piston assembly. Cycle simulation shows that a large, stationary natural gas spark ignition engine produces enough waste heat to operate the novel WHR system. With the use of this system, the stationary gas compression ignition engine running at 900 RPM and full load had a net increase of 177.03 kW (240.7 HP). This increase in power improved the brake fuel conversion efficiency by 4.53%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent changes in the cost and availability of natural gas (NG) as compared to diesel have sparked interest at all levels of the commercial shipping sector. In particular, Class 1 heavy-duty rail has been researching NG as a supplement to diesel combustion. This study investigates the relative economic and emissions advantage of making use of the energy efficiencies if combustion is circumvented altogether by use of fuel cell (FC) technologies applied to NG. FC technology for the transport sector has primarily been developed for the private automobile. However, FC use in the automobile sector faces considerable economic and logistical barriers such as cost, range, durability, and refueling infrastructure. The heavy-duty freight sector may be a more reasonable setting to introduce FC technology to the transportation market. The industry has shown interest in adopting NG as a potential fuel by already investing in NG infrastructure and locomotives. The two most promising FC technologies are proton exchange membrane fuel cells (PEMFCs) and solid oxide fuel cells (SOFCs). SOFCs are more efficient and capable of accepting any kind of fuel, which makes them particularly attractive. The rail industry can benefit from the adoption of FC technology through reduced costs and emissions, as well as limiting dependence on diesel, which accounts for a large portion of operation expenses for Class 1 railroads. This report provides an economic feasibility analysis comparing the use of PEMFCs and SOFCs in heavy freight rail transport applications. The scope is to provide insight into which technologies could be pursued by the industry and to prioritize technologies that need further development. Initial results do not show economic potential for NG and fuel cells in locomotion, but some minimal potential for reduced emissions is seen. Various technology configurations and market scenarios analyzed could provide savings if the price of LNG is decreased and the price of diesel increases. The most beneficial areas of needed research include technology development for the variable output of SOFCs, and hot start-up optimization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Following the rapid growth of China's economy, energy consumption, especially electricity consumption of China, has made a huge increase in the past 30 years. Since China has been using coal as the major energy source to produce electricity during these years, environmental problems have become more and more serious. The research question for this paper is: "Can China use alternative energies instead of coal to produce more electricity in 2030?" Hydro power, nuclear power, natural gas, wind power and solar power are considered as the possible and most popular alternative energies for the current situation of China. To answer the research question above, there are two things to know: How much is the total electricity consumption in China by 2030? And how much electricity can the alternative energies provide in China by 2030? For a more reliable forecast, an econometric model using the Ordinary Least Squares Method is established on this paper to predict the total electricity consumption by 2030. The predicted electricity coming from alternative energy sources by 2030 in China can be calculated from the existing literature. The research results of this paper are analyzed under a reference scenario and a max tech scenario. In the reference scenario, the combination of the alternative energies can provide 47.71% of the total electricity consumption by 2030. In the max tech scenario, it provides 57.96% of the total electricity consumption by 2030. These results are important not only because they indicate the government's long term goal is reachable, but also implies that the natural environment of China could have an inspiring future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increasing prices for fuel with depletion and instability in foreign oil imports has driven the importance for using alternative and renewable fuels. The alternative fuels such as ethanol, methanol, butyl alcohol, and natural gas are of interest to be used to relieve some of the dependence on oil for transportation. The renewable fuel, ethanol which is made from the sugars of corn, has been used widely in fuel for vehicles in the United States because of its unique qualities. As with any renewable fuel, ethanol has many advantages but also has disadvantages. Cold startability of engines is one area of concern when using ethanol blended fuel. This research was focused on the cold startability of snowmobiles at ambient temperatures of 20 °F, 0 °F, and -20 °F. The tests were performed in a modified 48 foot refrigerated trailer which was retrofitted for the purpose of cold-start tests. Pure gasoline (E0) was used as a baseline test. A splash blended ethanol and gasoline mixture (E15, 15% ethanol and 85% gasoline by volume) was then tested and compared to the E0 fuel. Four different types of snowmobiles were used for the testing including a Yamaha FX Nytro RTX four-stroke, Ski-doo MX Z TNT 600 E-TEC direct injected two stroke, Polaris 800 Rush semi-direct injected two-stroke, and an Arctic Cat F570 carbureted two-stroke. All of the snowmobiles operate on open loop systems which means there was no compensation for the change in fuel properties. Emissions were sampled using a Sensors Inc. Semtech DS five gas emissions analyzer and engine data was recoded using AIM Racing Data Power EVO3 Pro and EVO4 systems. The recorded raw exhaust emissions included carbon monoxide (CO), carbon dioxide (CO2), total hydrocarbons (THC), and oxygen (O2). To help explain the trends in the emissions data, engine parameters were also recorded. The EVO equipment was installed on each vehicle to record the following parameters: engine speed, exhaust gas temperature, head temperature, coolant temperature, and test cell air temperature. At least three consistent tests to ensure repeatability were taken at each fuel and temperature combination so a total of 18 valid tests were taken on each snowmobile. The snowmobiles were run at operating temperature to clear any excess fuel in the engine crankcase before each cold-start test. The trends from switching from E0 to E15 were different for each snowmobile as they all employ different engine technologies. The Yamaha snowmobile (four-stroke EFI) achieved higher levels of CO2 with lower CO and THC emissions on E15. Engine speeds were fairly consistent between fuels but the average engine speeds were increased as the temperatures decreased. The average exhaust gas temperature increased from 1.3-1.8% for the E15 compared to E0 due to enleanment. For the Ski-doo snowmobile (direct injected two-stroke) only slight differences were noted when switching from E0 to E15. This could possibly be due to the lean of stoichiometric operation of the engine at idle. The CO2 emissions decreased slightly at 20 °F and 0 °F for E15 fuel with a small difference at -20 °F. Almost no change in CO or THC emissions was noted for all temperatures. The only significant difference in the engine data observed was the exhaust gas temperature which decreased with E15. The Polaris snowmobile (semi-direct injected two-stroke) had similar raw exhaust emissions for each of the two fuels. This was probably due to changing a resistor when using E15 which changed the fuel map for an ethanol mixture (E10 vs. E0). This snowmobile operates at a rich condition which caused the engine to emit higher values of CO than CO2 along with exceeding the THC analyzer range at idle. The engine parameters and emissions did not increase or decrease significantly with decreasing temperature. The average idle engine speed did increase as the ambient temperature decreased. The Arctic Cat snowmobile (carbureted two-stroke) was equipped with a choke lever to assist cold-starts. The choke was operated in the same manor for both fuels. Lower levels of CO emissions with E15 fuel were observed yet the THC emissions exceeded the analyzer range. The engine had a slightly lower speed with E15.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis attempts to find the least-cost strategy to reduce CO2 emission by replacing coal by other energy sources for electricity generation in the context of the proposed EPA’s regulation on CO2 emissions from existing coal-fired power plants. An ARIMA model is built to forecast coal consumption for electricity generation and its CO2 emissions in Michigan from 2016 to 2020. CO2 emission reduction costs are calculated under three emission reduction scenarios- reduction to 17%, 30% and 50% below the 2005 emission level. The impacts of Production Tax Credit (PTC) and the intermittency of renewable energy are also discussed. The results indicate that in most cases natural gas will be the best alternative to coal for electricity generation to realize CO2 reduction goals; if the PTC for wind power will continue after 2015, a natural gas and wind combination approach could be the best strategy based on the least-cost criterion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although natural gas has been praised as a clean and abundant energy source, the varying impacts and uncertainties surrounding the process of extracting natural gas from unconventional sources, known as horizontal high-volume hydraulic fracturing (HVHF) or “fracking,” have raised important concerns. The practice of HVHF is expanding so quickly that the full impacts are not yet known. This thesis project, using a grounded theory methodological approach, explores the risks and benefits associated with HVHF as recognized by the residents of two Michigan counties, one that currently produces natural gas by HVHF (Crawford County) and one that does not (Barry County). Through an analysis of media content related to HVHF in each case study site and interviews with stakeholders in both counties, this study examines perceptions of risks and benefits by comparing two communities that differ in their level of experience with HVHF operations, contributing to our understanding of how perceptions of risks and benefits are shaped by natural gas development. The comparative analysis of the case study counties revealed similarities and differences between the case study counties. Overall, Barry County residents identified fewer benefits and more risks, and had stronger negative perceptions than Crawford County residents. This study contributes to the social science literature by developing a richer theoretical frame for understanding perceptions of HVHF and also shares recommendations for industry, organizations, regulators, and government leaders interested in effectively communicating with community stakeholders about the benefits and risks of HVHF.