2 resultados para Comparison between methods of analysis

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corporate Social Responsibility (CSR) addresses the responsibility of companies for their impacts on society. The concept of strategic CSR is becoming increasingly mainstreamed in the forest industry, but there is, however, little consensus on the definition and implementation of CSR. The objective of this research is to build knowledge on the characteristics of CSR and to provide insights on the emerging trend to increase the credibility and legitimacy of CSR through standardization. The study explores how the sustainability managers of European and North American forest companies perceive CSR and the recently released ISO 26000 guidance standard on social responsibility. The conclusions were drawn from an analysis of two data sets; multivariate survey data based on one subset of 30 European and 13 North American responses, and data obtained through in-depth interviewing of 10 sustainability managers that volunteered for an hour long phone discussion about social responsibility practices at their company. The analysis concluded that there are no major differences in the characteristics of cross-Atlantic CSR. Hence, the results were consistent with previous research that suggests that CSR is a case- and company-specific concept. Regarding the components of CSR, environmental issues and organizational governance were key priorities in both regions. Consumer issues, human rights, and financial issues were among the least addressed categories. The study reveals that there are varying perceptions on the ISO 26000 guidance standard, both positive and negative. Moreover, sustainability managers of European and North American forest companies are still uncertain regarding the applicability of the ISO 26000 guidance standard to the forest industry. This study is among the first to provide a preliminary review of the practical implications of the ISO 26000 standard in the forest sector. The results may be utilized by sustainability managers interested in the best practices on CSR, and also by a variety of forest industrial stakeholders interested in the practical outcomes of the long-lasting CSR debate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the canopy cover of an urban environment leads to better estimates of carbon storage and more informed management decisions by urban foresters. The most commonly used method for assessing urban forest cover type extent is ground surveys, which can be both timeconsuming and expensive. The analysis of aerial photos is an alternative method that is faster, cheaper, and can cover a larger number of sites, but may be less accurate. The objectives of this paper were (1) to compare three methods of cover type assessment for Los Angeles, CA: handdelineation of aerial photos in ArcMap, supervised classification of aerial photos in ERDAS Imagine, and ground-collected data using the Urban Forest Effects (UFORE) model protocol; (2) to determine how well remote sensing methods estimate carbon storage as predicted by the UFORE model; and (3) to explore the influence of tree diameter and tree density on carbon storage estimates. Four major cover types (bare ground, fine vegetation, coarse vegetation, and impervious surfaces) were determined from 348 plots (0.039 ha each) randomly stratified according to land-use. Hand-delineation was better than supervised classification at predicting ground-based measurements of cover type and UFORE model-predicted carbon storage. Most error in supervised classification resulted from shadow, which was interpreted as unknown cover type. Neither tree diameter or tree density per plot significantly affected the relationship between carbon storage and canopy cover. The efficiency of remote sensing rather than in situ data collection allows urban forest managers the ability to quickly assess a city and plan accordingly while also preserving their often-limited budget.