3 resultados para Comparative performance

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heuristic optimization algorithms are of great importance for reaching solutions to various real world problems. These algorithms have a wide range of applications such as cost reduction, artificial intelligence, and medicine. By the term cost, one could imply that that cost is associated with, for instance, the value of a function of several independent variables. Often, when dealing with engineering problems, we want to minimize the value of a function in order to achieve an optimum, or to maximize another parameter which increases with a decrease in the cost (the value of this function). The heuristic cost reduction algorithms work by finding the optimum values of the independent variables for which the value of the function (the “cost”) is the minimum. There is an abundance of heuristic cost reduction algorithms to choose from. We will start with a discussion of various optimization algorithms such as Memetic algorithms, force-directed placement, and evolution-based algorithms. Following this initial discussion, we will take up the working of three algorithms and implement the same in MATLAB. The focus of this report is to provide detailed information on the working of three different heuristic optimization algorithms, and conclude with a comparative study on the performance of these algorithms when implemented in MATLAB. In this report, the three algorithms we will take in to consideration will be the non-adaptive simulated annealing algorithm, the adaptive simulated annealing algorithm, and random restart hill climbing algorithm. The algorithms are heuristic in nature, that is, the solution these achieve may not be the best of all the solutions but provide a means to reach a quick solution that may be a reasonably good solution without taking an indefinite time to implement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis "COMPARATIVE ANALYSIS OF EFFICIENCY AND OPERATING CHARACTERISTICS OF AUTOMOTIVE POWERTRAIN ARCHITECTURES THROUGH CHASSIS DYNAMOMETER TESTING" was completed through a collaborative partnership between Michigan Technological University and Argonne National Laboratory under a contractual agreement titled "Advanced Vehicle Characterization at Argonne National Laboratory". The goal of this project was to investigate, understand and document the performance and operational strategy of several modern passenger vehicles of various architectures. The vehicles were chosen to represent several popular engine and transmission architectures and were instrumented to allow for data collection to facilitate comparative analysis. In order to ensure repeatability and reliability during testing, each vehicle was tested over a series of identical drive cycles in a controlled environment utilizing a vehicle chassis dynamometer. Where possible, instrumentation was preserved between vehicles to ensure robust data collection. The efficiency and fuel economy performance of the vehicles was studied. In addition, the powertrain utilization strategies, significant energy loss sources, tailpipe emissions, combustion characteristics, and cold start behavior were also explored in detail. It was concluded that each vehicle realizes different strengths and suffers from different limitations in the course of their attempts to maximize efficiency and fuel economy. In addition, it was observed that each vehicle regardless of architecture exhibits significant energy losses and difficulties in cold start operation that can be further improved with advancing technology. It is clear that advanced engine technologies and driveline technologies are complimentary aspects of vehicle design that must be utilized together for best efficiency improvements. Finally, it was concluded that advanced technology vehicles do not come without associated cost; the complexity of the powertrains and lifecycle costs must be considered to understand the full impact of advanced vehicle technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Consumers currently enjoy a surplus of goods (books, videos, music, or other items) available to purchase. While this surplus often allows a consumer to find a product tailored to their preferences or needs, the volume of items available may require considerable time or effort on the part of the user to find the most relevant item. Recommendation systems have become a common part of many online business that supply users books, videos, music, or other items to consumers. These systems attempt to provide assistance to consumers in finding the items that fit their preferences. This report presents an overview of recommendation systems. We will also briefly explore the history of recommendation systems and the large boost that was given to research in this field due to the Netflix Challenge. The classical methods for collaborative recommendation systems are reviewed and implemented, and an examination is performed contrasting the complexity and performance among the various models. Finally, current challenges and approaches are discussed.