4 resultados para Community Forest
em Digital Commons - Michigan Tech
Resumo:
Our research explored the influence of deer and gap size on nitrogen cycling, soil compaction, and vegetation trajectories in twelve canopy gaps of varying sizes in a hemlock-northern hardwood forest. Each gap contained two fenced and two unfenced plots. Gap size, soil compaction, winter deer use, and available nitrogen were measured in 2011. Vegetation was assessed in 2007 and 2011, and non-metric multi-dimensional scaling was used to determine vegetative change. Results show that winter deer use was greater in smaller gaps. Deer accessibility did not influence compaction but did significantly increase total available nitrogen in April. April ammonium, April nitrate, and May nitrate were positively related to gap size. The relationship between gap size and vegetative community change was positive for fenced plots but unrelated for unfenced plots. In conclusion, deer are positively contributing to nitrogen dynamics and altering the relationship between canopy gap size and vegetative community change.
Resumo:
Throughout the Upper Great Lakes region, alterations to historic disturbance regimes have influenced plant community dynamics in hemlock-hardwood forests. Several important mesic forest species, eastern hemlock (Tsuga canadensis), yellow birch (Betula alleghaniensis), eastern white pine (Pinus strobus), and Canada yew (Taxus canadensis), are in decline due to exploitive logging practices used at the turn of the 20th century and the wave of intense fires that followed. Continued regeneration and recruitment failure is attributed to contemporary forest management practices and overbrowsing by white-tailed deer (Odocoileus virginianus). Therefore, I examined the influence of two concurrent disturbances, overstory removal and herbivory, on plant community dynamics in two hemlock-hardwood forests. I measured the post-disturbance regeneration response (herbaceous and woody species) inside and outside of deer exclosures in 20 artificial canopy gaps (50 – 450 m2) and monitored survival and growth for hundreds of planted seedlings. The results of this research show that interacting disturbances can play a large role in shaping plant community composition and structure in hemlock-hardwood forests. White-tailed deer herbivory homogenized the post-disturbance plant communities across the experimental gradient of gap areas, essentially making species compositions in small gaps “look like” those in large gaps. Deer browsing also influenced probability of survival for planted Canada yew cuttings; all else being equal an individual was nearly seven times more likely to survive if protected from herbivory (P < 0.001). In contrast, the ability of sugar maple (Acer saccharum) to persist under high levels of herbivory and respond rapidly to overstory release appears to be related to the presence of stem layering(i.e., portions of below-ground prostrate stem). Layering occurred in 52% of excavated saplings (n = 100) and was significantly associated with increased post-disturbance height growth. Understory light was also important to planted seedling establishment and height growth. Higher levels of direct under-canopy light negatively impacted survival for shade-tolerant hemlock and Canada yew, while an increase in diffuse light was linked to a higher probability of survival for yellow birch and height growth for hemlock and Canada yew. Increases in white pine height growth were also significantly associated with a decrease in canopy cover.
Resumo:
The herbaceous layer is a dynamic layer in a forest ecosystem which often contains the highest species richness in northern temperate forests. Few long-term studies exist in northern hardwood forests with consistent management practices to observe herbaceous species dynamics. The Ford Forest (Michigan Technological University) reached its 50th year of management during the winter of 2008-2009. Herbaceous species were sampled during the summers pre- and post-harvest. Distinct herbaceous communities developed in the 13-cm diameter-limit treatment and the uncut control. After the harvest, the diameter-limit treatments had herbaceous communities more similar to the 13-cm diameter-limit treatment than the uncut control; the herbaceous layer contained more exotic and early successional species. Fifty years of continuous management changed the herbaceous community especially in the diameter-limit treatments. Sites used in the development of habitat classification systems based on the presence and absence of certain herbaceous species can also be used to monitor vegetation change over time. The Guide to Forest Communities and Habitat Types of Michigan was developed to aid forest managers in understanding the potential productivity of a stand, and often aid in the development of ecologically-based forest management practices. Subsets of plots used to create the Western Upper Peninsula Guide were resampled after 10 years. During the resampling, both spring and summer vegetation were sampled and earthworm populations were estimated through liquid extraction. Spring sampling observed important spring ephemerals missed during summer sampling. More exotic species were present during the summer 2010 sampling than the summer 2000 sampling. Invasive European earthworms were also observed at all sample locations in all habitat types; earthworm densities increased with increasing habitat richness. To ensure the accuracy of the guide book, plots should be monitored to see how herbaceous communities are changing. These plots also offer unique opportunities to monitor for invasive species and the effects of a changing climate.
Resumo:
Soils are the largest sinks of carbon in terrestrial ecosystems. Soil organic carbon is important for ecosystem balance as it supplies plants with nutrients, maintains soil structure, and helps control the exchange of CO2 with the atmosphere. The processes in which wood carbon is stabilized and destabilized in forest soils is still not understood completely. This study attempts to measure early wood decomposition by different fungal communities (inoculation with pure colonies of brown or white rot, or the original microbial community) under various interacting treatments: wood quality (wood from +CO2, +CO2+O3, or ambient atmosphere Aspen-FACE treatments from Rhinelander, WI), temperature (ambient or warmed), soil texture (loamy or sandy textured soil), and wood location (plot surface or buried 15cm below surface). Control plots with no wood chips added were also monitored throughout the study. By using isotopically-labelled wood chips from the Aspen-FACE experiment, we are able to track wood-derived carbon losses as soil CO2 efflux and as leached dissolved organic carbon (DOC). We analyzed soil water for chemical characteristics such as, total phenolics, SUVA254, humification, and molecular size. Wood chip samples were also analyzed for their proportion of lignin:carbohydrates using FTIR analysis at three time intervals throughout 12 months of decomposition. After two years of measurements, the average total soil CO2 efflux rates were significantly different depending on wood location, temperature, and wood quality. The wood-derived portion soil CO2 efflux also varied significantly by wood location, temperature, and wood quality. The average total DOC and the wood-derived portion of DOC differed between inoculation treatments, wood location, and temperature. Soil water chemical characteristics varied significantly by inoculation treatments, temperature, and wood quality. After 12 months of decomposition the proportion of lignin:carbohydrates varied significantly by inoculation treatment, with white rot having the only average proportional decrease in lignin:carbohydrates. Both soil CO2 efflux and DOC losses indicate that wood location is important. Carbon losses were greater from surface wood chips compared with buried wood chips, implying the importance of buried wood for total ecosystem carbon stabilization. Treatments associated with climate change also had an effect on the level of decomposition. DOC losses, soil water characteristics, and FTIR data demonstrate the importance of fungal community on the degree of decomposition and the resulting byproducts found throughout the soil.