3 resultados para Collective representations

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optimizing compiler internal representation fundamentally affects the clarity, efficiency and feasibility of optimization algorithms employed by the compiler. Static Single Assignment (SSA) as a state-of-the-art program representation has great advantages though still can be improved. This dissertation explores the domain of single assignment beyond SSA, and presents two novel program representations: Future Gated Single Assignment (FGSA) and Recursive Future Predicated Form (RFPF). Both FGSA and RFPF embed control flow and data flow information, enabling efficient traversal program information and thus leading to better and simpler optimizations. We introduce future value concept, the designing base of both FGSA and RFPF, which permits a consumer instruction to be encountered before the producer of its source operand(s) in a control flow setting. We show that FGSA is efficiently computable by using a series T1/T2/TR transformation, yielding an expected linear time algorithm for combining together the construction of the pruned single assignment form and live analysis for both reducible and irreducible graphs. As a result, the approach results in an average reduction of 7.7%, with a maximum of 67% in the number of gating functions compared to the pruned SSA form on the SPEC2000 benchmark suite. We present a solid and near optimal framework to perform inverse transformation from single assignment programs. We demonstrate the importance of unrestricted code motion and present RFPF. We develop algorithms which enable instruction movement in acyclic, as well as cyclic regions, and show the ease to perform optimizations such as Partial Redundancy Elimination on RFPF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation seeks to contribute to film, feminist and Latino/a studies by exploring the construction and ideological implications of representations of Latinas in four recent, popular U.S. films: Girlfight (Kusama 2000), Maid in Manhattan (Wang 2002), Real Women Have Curves (Cardoso 2002) and Spanglish (Brooks 2004). These films were released following a time of tremendous growth in the population and the political and economic strength of the Latina/o community as well as a rise in popularity and visibility in the 1990s of entertainers like Selena and actresses such as Jennifer Lopez and Salma Hayek. Drawing on the critical concepts of hybridity, Latinidad, and Bakhtinian dialogism, I analyze these films from a cultural and historical perspective to consider whether and to what degree, assuming changes in the situation of Latinas/os in the 1990’s, representations of Latinas have also changed. Specifically, in this dissertation I consider the ways in which the terrain of the Latina body is articulated in these films in relation to competing societal, cultural and familial conflicts, focusing on the body as a site of struggle where relationships collide, interact and are negotiated. In this dissertation I argue that most of the representations of Latinas in these films defy easy categorization, featuring complex characters grappling with economic issues, intergenerational differences, abuse, mother-daughter relationships, notions of beauty, familial expectations and the very real tensions between Latina/o cultural beliefs and practices and the dominant Anglo culture of the United States. Specifically, I argue that narrative and visual representation of Latina bodies in these films reflects a change in the Latinas offered for consumption to film viewers, presenting us with what some critics have called ‘emergent’ Latinas: conflicted and multilayered representations that in some cases challenge dominant ideologies and offer new demonstrations of Latina agency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional flow visualization plays an essential role in many areas of science and engineering, such as aero- and hydro-dynamical systems which dominate various physical and natural phenomena. For popular methods such as the streamline visualization to be effective, they should capture the underlying flow features while facilitating user observation and understanding of the flow field in a clear manner. My research mainly focuses on the analysis and visualization of flow fields using various techniques, e.g. information-theoretic techniques and graph-based representations. Since the streamline visualization is a popular technique in flow field visualization, how to select good streamlines to capture flow patterns and how to pick good viewpoints to observe flow fields become critical. We treat streamline selection and viewpoint selection as symmetric problems and solve them simultaneously using the dual information channel [81]. To the best of my knowledge, this is the first attempt in flow visualization to combine these two selection problems in a unified approach. This work selects streamline in a view-independent manner and the selected streamlines will not change for all viewpoints. My another work [56] uses an information-theoretic approach to evaluate the importance of each streamline under various sample viewpoints and presents a solution for view-dependent streamline selection that guarantees coherent streamline update when the view changes gradually. When projecting 3D streamlines to 2D images for viewing, occlusion and clutter become inevitable. To address this challenge, we design FlowGraph [57, 58], a novel compound graph representation that organizes field line clusters and spatiotemporal regions hierarchically for occlusion-free and controllable visual exploration. We enable observation and exploration of the relationships among field line clusters, spatiotemporal regions and their interconnection in the transformed space. Most viewpoint selection methods only consider the external viewpoints outside of the flow field. This will not convey a clear observation when the flow field is clutter on the boundary side. Therefore, we propose a new way to explore flow fields by selecting several internal viewpoints around the flow features inside of the flow field and then generating a B-Spline curve path traversing these viewpoints to provide users with closeup views of the flow field for detailed observation of hidden or occluded internal flow features [54]. This work is also extended to deal with unsteady flow fields. Besides flow field visualization, some other topics relevant to visualization also attract my attention. In iGraph [31], we leverage a distributed system along with a tiled display wall to provide users with high-resolution visual analytics of big image and text collections in real time. Developing pedagogical visualization tools forms my other research focus. Since most cryptography algorithms use sophisticated mathematics, it is difficult for beginners to understand both what the algorithm does and how the algorithm does that. Therefore, we develop a set of visualization tools to provide users with an intuitive way to learn and understand these algorithms.