3 resultados para Collection development (Libraries)

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micro Combined Heat and Power (Micro-CHP) system produces both electricity and heat required for residential or small business applications. Use of Micro-CHP in a residential application not only creates energy and economic savings but also reduces the carbon foot print of the house or small business. Additionally, micro-CHP can subsidize its cost of operation by selling excess electricity produced back to the grid. Even though Micro-CHP remains attractive on paper, high initial cost and optimization issues in residential scale heat and electrical requirement has kept this technology from becoming a success. To understand and overcome all disadvantages posed my Micro-CHP system, a laboratory is developed to test different scenarios of Micro-CHP applications so that we can learn and improve the current technology. This report focuses on the development of this Micro-CHP laboratory including installation of Ecopower micro-CHP unit, developing fuel line and exhaust line for Ecopower unit, design of electrical and thermal loop, installing all the instrumentation required for data collection on the Ecopower unit and developing controls for heat load simulation using thermal loop. Also a simulation of Micro-CHP running on Syngas is done in Matlab. This work was supported through the donation of ‘Ecopower’ a Micro-CHP unit by Marathon Engine and through the support of Michigan Tech REF-IF grand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurement and modeling techniques were developed to improve over-water gaseous air-water exchange measurements for persistent bioaccumulative and toxic chemicals (PBTs). Analytical methods were applied to atmospheric measurements of hexachlorobenzene (HCB), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Additionally, the sampling and analytical methods are well suited to study semivolatile organic compounds (SOCs) in air with applications related to secondary organic aerosol formation, urban, and indoor air quality. A novel gas-phase cleanup method is described for use with thermal desorption methods for analysis of atmospheric SOCs using multicapillary denuders. The cleanup selectively removed hydrogen-bonding chemicals from samples, including much of the background matrix of oxidized organic compounds in ambient air, and thereby improved precision and method detection limits for nonpolar analytes. A model is presented that predicts gas collection efficiency and particle collection artifact for SOCs in multicapillary denuders using polydimethylsiloxane (PDMS) sorbent. An approach is presented to estimate the equilibrium PDMS-gas partition coefficient (Kpdms) from an Abraham solvation parameter model for any SOC. A high flow rate (300 L min-1) multicapillary denuder was designed for measurement of trace atmospheric SOCs. Overall method precision and detection limits were determined using field duplicates and compared to the conventional high-volume sampler method. The high-flow denuder is an alternative to high-volume or passive samplers when separation of gas and particle-associated SOCs upstream of a filter and short sample collection time are advantageous. A Lagrangian internal boundary layer transport exchange (IBLTE) Model is described. The model predicts the near-surface variation in several quantities with fetch in coastal, offshore flow: 1) modification in potential temperature and gas mixing ratio, 2) surface fluxes of sensible heat, water vapor, and trace gases using the NOAA COARE Bulk Algorithm and Gas Transfer Model, 3) vertical gradients in potential temperature and mixing ratio. The model was applied to interpret micrometeorological measurements of air-water exchange flux of HCB and several PCB congeners in Lake Superior. The IBLTE Model can be applied to any scalar, including water vapor, carbon dioxide, dimethyl sulfide, and other scalar quantities of interest with respect to hydrology, climate, and ecosystem science.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over 2 million Anterior Cruciate Ligament (ACL) injuries occur annually worldwide resulting in considerable economic and health burdens (e.g., suffering, surgery, loss of function, risk for re-injury, and osteoarthritis). Current screening methods are effective but they generally rely on expensive and time-consuming biomechanical movement analysis, and thus are impractical solutions. In this dissertation, I report on a series of studies that begins to investigate one potentially efficient alternative to biomechanical screening, namely skilled observational risk assessment (e.g., having experts estimate risk based on observations of athletes movements). Specifically, in Study 1 I discovered that ACL injury risk can be accurately and reliably estimated with nearly instantaneous visual inspection when observed by skilled and knowledgeable professionals. Modern psychometric optimization techniques were then used to develop a robust and efficient 5-item test of ACL injury risk prediction skill—i.e., the ACL Injury-Risk-Estimation Quiz or ACL-IQ. Study 2 cross-validated the results from Study 1 in a larger representative sample of both skilled (Exercise Science/Sports Medicine) and un-skilled (General Population) groups. In accord with research on human expertise, quantitative structural and process modeling of risk estimation indicated that superior performance was largely mediated by specific strategies and skills (e.g., ignoring irrelevant information), independent of domain general cognitive abilities (e.g., metal rotation, general decision skill). These cognitive models suggest that ACL-IQ is a trainable skill, providing a foundation for future research and applications in training, decision support, and ultimately clinical screening investigations. Overall, I present the first evidence that observational ACL injury risk prediction is possible including a robust technology for fast, accurate and reliable measurement—i.e., the ACL-IQ. Discussion focuses on applications and outreach including a web platform that was developed to house the test, provide a repository for further data collection, and increase public and professional awareness and outreach (www.ACL-IQ.org). Future directions and general applications of the skilled movement analysis approach are also discussed.