2 resultados para Closed set
em Digital Commons - Michigan Tech
Resumo:
The study of advanced materials aimed at improving human life has been performed since time immemorial. Such studies have created everlasting and greatly revered monuments and have helped revolutionize transportation by ushering the age of lighter–than–air flying machines. Hence a study of the mechanical behavior of advanced materials can pave way for their use for mankind’s benefit. In this school of thought, the aim of this dissertation is to broadly perform two investigations. First, an efficient modeling approach is established to predict the elastic response of cellular materials with distributions of cell geometries. Cellular materials find important applications in structural engineering. The approach does not require complex and time-consuming computational techniques usually associated with modeling such materials. Unlike most current analytical techniques, the modeling approach directly accounts for the cellular material microstructure. The approach combines micropolar elasticity theory and elastic mixture theory to predict the elastic response of cellular materials. The modeling approach is applied to the two dimensional balsa wood material. Predicted properties are in good agreement with experimentally determined properties, which emphasizes the model’s potential to predict the elastic response of other cellular solids, such as open cell and closed cell foams. The second topic concerns intraneural ganglion cysts which are a set of medical conditions that result in denervation of the muscles innervated by the cystic nerve leading to pain and loss of function. Current treatment approaches only temporarily alleviate pain and denervation which, however, does not prevent cyst recurrence. Hence, a mechanistic understanding of the pathogenesis of intraneural ganglion cysts can help clinicians understand them better and therefore devise more effective treatment options. In this study, an analysis methodology using finite element analysis is established to investigate the pathogenesis of intraneural ganglion cysts. Using this methodology, the propagation of these cysts is analyzed in their most common site of occurrence in the human body i.e. the common peroneal nerve. Results obtained using finite element analysis show good correlation with clinical imaging patterns thereby validating the promise of the method to study cyst pathogenesis.
Resumo:
Steel tubular cast-in-place pilings are used throughout the country for many different project types. These piles are a closed-end pipe with varying wall thicknesses and outer diameters, that are driven to depth and then the core is filled with concrete. These piles are typically used for smaller bridges, or secondary structures. Mostly the piling is designed based on a resistance based method which is a function of the soil properties of which the pile is driven through, however there is a structural capacity of these members that is considered to be the upper bound on the loading of the member. This structural capacity is given by the AASHTO LRFD (2010), with two methods. These two methods are based on a composite or non-composite section. Many state agencies and corporations use the non-composite equation because it is requires much less computation and is known to be conservative. However with the trends of the time, more and more structural elements are being investigated to determine ways to better understand the mechanics of the members, which could lead to more efficient and safer designs. In this project, a set of these piling are investigated. The way the cross section reacts to several different loading conditions, along with a more detailed observation of the material properties is considered as part of this research. The evaluation consisted of testing stub sections of pile with varying sizes (10-¾”, 12-¾”), wall thicknesses (0.375”, 0.5”), and testing methods (whole compression, composite compression, push through, core sampling). These stub sections were chosen as they would represent a similar bracing length to many different soils. In addition, a finite element model was developed using ANSYS to predict the strains from the testing of the pile cross sections. This model was able to simulate the strains from most of the loading conditions and sizes that were tested. The bond between the steel shell and the concrete core, along with the concrete strength through the depth of the cross section were some of the material properties of these sections that were investigated.