2 resultados para Climate risks
em Digital Commons - Michigan Tech
Resumo:
Studies are suggesting that hurricane hazard patterns (e.g. intensity and frequency) may change as a consequence of the changing global climate. As hurricane patterns change, it can be expected that hurricane damage risks and costs may change as a result. This indicates the necessity to develop hurricane risk assessment models that are capable of accounting for changing hurricane hazard patterns, and develop hurricane mitigation and climatic adaptation strategies. This thesis proposes a comprehensive hurricane risk assessment and mitigation strategies that account for a changing global climate and that has the ability of being adapted to various types of infrastructure including residential buildings and power distribution poles. The framework includes hurricane wind field models, hurricane surge height models and hurricane vulnerability models to estimate damage risks due to hurricane wind speed, hurricane frequency, and hurricane-induced storm surge and accounts for the timedependant properties of these parameters as a result of climate change. The research then implements median insured house values, discount rates, housing inventory, etc. to estimate hurricane damage costs to residential construction. The framework was also adapted to timber distribution poles to assess the impacts climate change may have on timber distribution pole failure. This research finds that climate change may have a significant impact on the hurricane damage risks and damage costs of residential construction and timber distribution poles. In an effort to reduce damage costs, this research develops mitigation/adaptation strategies for residential construction and timber distribution poles. The costeffectiveness of these adaptation/mitigation strategies are evaluated through the use of a Life-Cycle Cost (LCC) analysis. In addition, a scenario-based analysis of mitigation strategies for timber distribution poles is included. For both residential construction and timber distribution poles, adaptation/mitigation measures were found to reduce damage costs. Finally, the research develops the Coastal Community Social Vulnerability Index (CCSVI) to include the social vulnerability of a region to hurricane hazards within this hurricane risk assessment. This index quantifies the social vulnerability of a region, by combining various social characteristics of a region with time-dependant parameters of hurricanes (i.e. hurricane wind and hurricane-induced storm surge). Climate change was found to have an impact on the CCSVI (i.e. climate change may have an impact on the social vulnerability of hurricane-prone regions).
Resumo:
Since it is very toxic and accumulates in organisms, particularly in fish, mercury is a very important pollutant and one of the most studies. And this concern over the toxicity and human health risks of mercury has prompted efforts to regulate anthropogenic emissions. As mercury pollution problem is getting increasingly serious, we are curious about how serious this problem will be in the future. What is more, how the climate change in the future will affect the mercury concentration in the atmosphere. So we investigate the impact of climate change on mercury concentration in the atmosphere. We focus on the comparison between the mercury data for year 2000 and for year 2050. The GEOS-Chem model shows that the mercury concentrations for all tracers (1 to 3), elemental mercury (Hg(0)), divalent mercury (Hg(II)) and primary particulate mercury (Hg(P)) have differences between 2000 and 2050 in most regions over the world. From the model results, we can see the climate change from 2000 to 2050 would decrease Hg(0) surface concentration in most of the world. The driving factors of Hg(0) surface concentration changes are natural emissions(ocean and vegetation) and the transformation reactions between Hg(0) and Hg(II). The climate change from 2000 to 2050 would increase Hg(II) surface concentration in most of mid-latitude continental parts of the world while decreasing Hg(II) surface concentration in most of high-latitude part of the world. The driving factors of Hg(II) surface concentration changes is deposition amount change (majorly wet deposition) from 2000 to 2050 and the transformation reactions between Hg(0) and Hg(II). Climate change would increase Hg(P) concentration in most of mid-latitude area of the world and meanwhile decrease Hg(P) concentration in most of high-latitude regions of the world. For the Hg(P) concentration changes, the major driving factor is the deposition amount change (mainly wet deposition) from 2000 to 2050.