7 resultados para Clean Water Act
em Digital Commons - Michigan Tech
Resumo:
This study’s objective was to answer three research questions related to students’ knowledge and attitudes about water quality and availability issues. It is important to understand what knowledge students have about environmental problems such as these, because today’s students will become the problem solvers of the future. If environmental problems, such as those related to water quality, are ever going to be solved, students must be environmentally literate. Several methods of data collection were used. Surveys were given to both Bolivian and Jackson High School students in order to comparison their initial knowledge and attitudes about water quality issues. To study the effects of instruction, a unit of instruction about water quality issues was then taught to the Jackson High School students to see what impact it would have on their knowledge. In addition, the learning of two different groups of Jackson High School students was compared—one group of general education students and a second group of students that were learning in an inclusion classroom and included special education students and struggling learners form the general education population. Student and teacher journals, a unit test, and postsurvey responses were included in the data set. Results suggested that when comparing Bolivian students and Jackson High School students, Jackson High School students were more knowledgeable concerning clean water infrastructure and its importance, despite the fact that these issues were less relevant to their lives than for their Bolivian counterparts. Although overall, the data suggested that all the Jackson High students showed evidence that the instruction impacted their knowledge, the advanced Biology students appeared to show stronger gains than their peers in an inclusion classroom.
Resumo:
The lack of access to sufficient water and sanitation facilities is one of the largest hindrances towards the sustainable development of the poorest 2.2 billion people in the world. Rural Uganda is one of the areas where such inaccessibility is seriously hampering their efforts at development. Many rural Ugandans must travel several kilometers to fetch adequate water and many still do not have adequate sanitation facilities. Such poor access to clean water forces Ugandans to spend an inordinate amount of time and energy collecting water - time and energy that could be used for more useful endeavors. Furthermore, the difficulty in getting water means that people use less water than they need to for optimal health and well-being. Access to other sanitation facilities can also have a large impact, particularly on the health of young children and the elderly whose immune systems are less than optimal. Hand-washing, presence of a sanitary latrine, general household cleanliness, maintenance of the safe water chain and the households’ knowledge about and adherence to sound sanitation practices may be as important as access to clean water sources. This report investigates these problems using the results from two different studies. It first looks into how access to water affects peoples’ use of it. In particular it investigates how much water households use as a function of perceived effort to fetch it. Operationally, this was accomplished by surveying nearly 1,500 residents in three different districts around Uganda about their water usage and the time and distance they must travel to fetch it. The study found that there is no statistically significant correlation between a family’s water usage and the perceived effort they must put forth to have to fetch it. On average, people use around 15 liters per person per day. Rural Ugandan residents apparently require a certain amount of water and will travel as far or as long as necessary to collect it. Secondly, a study entitled “What Works Best in Diarrheal Disease Prevention?” was carried out to study the effectiveness of five different water and sanitation facilities in reducing diarrheal disease incidences amongst children under five. It did this by surveying five different communities before and after the implementation of improvements to find changes in diarrheal disease incidences amongst children under five years of age. It found that household water treatment devices provide the best means of preventing diarrheal diseases. This is likely because water often becomes contaminated before it is consumed even if it was collected from a protected source.
Resumo:
More than 1 billion people lack access to clean water and proper sanitation. As part of efforts to solve this problem, there is a growing shift from public to private water management led by The World Bank and the International Monetary Fund (IMF). This shift has inspired much related research. Researchers have assessed water privatization related perceptions of consumers, government officials, and multinational company agents. This thesis presents results of a study of nongovernmental (NGO) staff perceptions of water privatization. Although NGOs are important actors in sustainable water related development through water provision, we have little understanding of their perceptions of water privatization and how it impacts their activities. My goal was to fill this gap. I sampled international and national development NGOs with water, sanitation, and hygiene (WASH) foci. I conducted 28 interviews between January and June of 2011 with staff in key positions including water policy analysts, program officers, and project coordinators. Their perceptions of water privatization were mixed. I also found that local water privatization in most cases does not influence NGO decisions to conduct projects in a region. I found that development NGO staff base their beliefs about water privatization on a mix of personal experience and media coverage. My findings have important implications for the WASH sector as we work to solve the worsening global water access crisis.
Resumo:
More than eighteen percent of the world’s population lives without reliable access to clean water, forced to walk long distances to get small amounts of contaminated surface water. Carrying heavy loads of water long distances and ingesting contaminated water can lead to long-term health problems and even death. These problems affect the most vulnerable populations, women, children, and the elderly, more than anyone else. Water access is one of the most pressing issues in development today. Boajibu, a small village in Sierra Leone, where the author served in Peace Corps for two years, lacks access to clean water. Construction of a water distribution system was halted when a civil war broke out in 1992 and has not been continued since. The community currently relies on hand-dug and borehole wells that can become dirty during the dry season, which forces people to drink contaminated water or to travel a far distance to collect clean water. This report is intended to provide a design the system as it was meant to be built. The water system design was completed based on the taps present, interviews with local community leaders, local surveying, and points taken with a GPS. The design is a gravity-fed branched water system, supplied by a natural spring on a hill adjacent to Boajibu. The system’s source is a natural spring on a hill above Boajibu, but the flow rate of the spring is unknown. There has to be enough flow from the spring over a 24-hour period to meet the demands of the users on a daily basis, or what is called providing continuous flow. If the spring has less than this amount of flow, the system must provide intermittent flow, flow that is restricted to a few hours a day. A minimum flow rate of 2.1 liters per second was found to be necessary to provide continuous flow to the users of Boajibu. If this flow is not met, intermittent flow can be provided to the users. In order to aid the construction of a distribution system in the absence of someone with formal engineering training, a table was created detailing water storage tank sizing based on possible source flow rates. A builder can interpolate using the source flow rate found to get the tank size from the table. However, any flow rate below 2.1 liters per second cannot be used in the table. In this case, the builder should size the tank such that it can take in the water that will be supplied overnight, as all the water will be drained during the day because the users will demand more than the spring can supply through the night. In the developing world, there is often a problem collecting enough money to fund large infrastructure projects, such as a water distribution system. Often there is only enough money to add only one or two loops to a water distribution system. It is helpful to know where these one or two loops can be most effectively placed in the system. Various possible loops were designated for the Boajibu water distribution system and the Adaptive Greedy Heuristic Loop Addition Selection Algorithm (AGHLASA) was used to rank the effectiveness of the possible loops to construct. Loop 1 which was furthest upstream was selected because it benefitted the most people for the least cost. While loops which were further downstream were found to be less effective because they would benefit fewer people. Further studies should be conducted on the water use habits of the people of Boajibu to more accurately predict the demands that will be placed on the system. Further population surveying should also be conducted to predict population change over time so that the appropriate capacity can be built into the system to accommodate future growth. The flow at the spring should be measured using a V-notch weir and the system adjusted accordingly. Future studies can be completed adjusting the loop ranking method so that two users who may be using the water system for different lengths of time are not counted the same and vulnerable users are weighted more heavily than more robust users.
Resumo:
Gravity-flow aqueducts are used to bring clean water from mountain springs in the Comarca Ngäbe-Buglé, Panama, to the homes of the indigenous people who reside there. Spring captures enclose a spring to direct the flow of water into the transmission line. Seepage contact springs are most common, with water appearing above either hard basalt bedrock or a dense clay layer. Spring flows vary dramatically during wet and dry seasons, and discharge points of springs can shift, sometimes enough to impact the capture structure and its ability to properly collect all of the available water. Traditionally, spring captures are concrete boxes. The spring boxes observed by the author were dilapidated or out of alignment with the spring itself, only capturing part of the discharge. An improved design approach was developed that mimics the terrain surrounding the spring source to address these issues. Over the course of a year, three different spring sites were evaluated, and spring captures were designed and constructed based on the new approach. Spring flow data from each case study demonstrate increased flow capture in the improved structures. Rural water systems, including spring captures, can be sustainably maintained by the Circuit Rider model, a technical support system in which technical assistance is provided for the operation of the water systems. During 2012-2013, the author worked as a Circuit Rider and facilitated a water system improvement project while exploring methods of community empowerment to increase the capacity for system maintenance. Based on these experiences, recommendations are provided to expand the Circuit Rider model in the Comarca Ngäbe-Buglé under the Panamanian Ministry of Health’s Water and Sanitation Project (PASAP)
Resumo:
The Great Lakes watershed is home to over 40 million people, and the health of the Great Lakes ecosystem is vital to the overall economic, societal, and environmental health of the U.S. and Canada. However, environmental issues related to them are sometimes overlooked. Policymakers and the public face the challenges of balancing economic benefits with the need to conserve and/or replenish regional natural resources to ensure long term prosperity. From the literature review, nine critical stressors of ecological services were delineated, which include pollution and contamination, agricultural erosion, non-native species, degraded recreational resources, loss of wetlands habitat, climate change, risk of clean water shortage, vanishing sand dunes, and population overcrowding; this list was validated through a series of stakeholder discussions and focus groups in Grand Rapids. Focus groups were conducted in Grand Rapids to examine the awareness of, concern with, and willingness to expend resources on these stressors. Stressors that the respondents have direct contact with tend to be the most important. The focus group results show that concern related to pollution and contamination is much higher than for any of the other stressors. Low responses to climate change result in recommendations for outreach programs.
Resumo:
Worldwide, rural populations are far less likely to have access to clean drinking water than are urban ones. In many developing countries, the current approach to rural water supply uses a model of demand-driven, community-managed water systems. In Suriname, South America rural populations have limited access to improved water supplies; community-managed water supply systems have been installed in several rural communities by nongovernmental organizations as part of the solution. To date, there has been no review of the performance of these water supply systems. This report presents the results of an investigation of three rural water supply systems constructed in Saramaka villages in the interior of Suriname. The investigation used a combination of qualitative and quantitative methods, coupled with ethnographic information, to construct a comprehensive overview of these water systems. This overview includes the water use of the communities, the current status of the water supply systems, histories and sustainability of the water supply projects, technical reviews, and community perceptions. From this overview, factors important to the sustainability of these water systems were identified. Community water supply systems are engineered solutions that operate through social cooperation. The results from this investigation show that technical adequacy is the first and most critical factor for long-term sustainability of a water system. It also shows that technical adequacy is dependent on the appropriateness of the engineering design for the social, cultural, and natural setting in which it takes place. The complex relationships between technical adequacy, community support, and the involvement of women play important roles in the success of water supply projects. Addressing these factors during the project process and taking advantage of alternative water resources may increase the supply of improved drinking water to rural communities.