1 resultado para Classical orthogonal polynomials
em Digital Commons - Michigan Tech
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (5)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (17)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (55)
- Boston University Digital Common (1)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CaltechTHESIS (9)
- Cambridge University Engineering Department Publications Database (45)
- CentAUR: Central Archive University of Reading - UK (100)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (36)
- Cochin University of Science & Technology (CUSAT), India (4)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (3)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (6)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (2)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (7)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (86)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (3)
- Massachusetts Institute of Technology (2)
- Memoria Académica - FaHCE, UNLP - Argentina (14)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (14)
- Publishing Network for Geoscientific & Environmental Data (15)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (93)
- Queensland University of Technology - ePrints Archive (28)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (219)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (8)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (31)
- Universidade Complutense de Madrid (3)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (16)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (1)
- Université de Montréal, Canada (14)
- University of Connecticut - USA (4)
- University of Michigan (21)
- University of Queensland eSpace - Australia (1)
- WestminsterResearch - UK (1)
Resumo:
This dissertation concerns convergence analysis for nonparametric problems in the calculus of variations and sufficient conditions for weak local minimizer of a functional for both nonparametric and parametric problems. Newton's method in infinite-dimensional space is proved to be well-defined and converges quadratically to a weak local minimizer of a functional subject to certain boundary conditions. Sufficient conditions for global converges are proposed and a well-defined algorithm based on those conditions is presented and proved to converge. Finite element discretization is employed to achieve an implementable line-search-based quasi-Newton algorithm and a proof of convergence of the discretization of the algorithm is included. This work also proposes sufficient conditions for weak local minimizer without using the language of conjugate points. The form of new conditions is consistent with the ones in finite-dimensional case. It is believed that the new form of sufficient conditions will lead to simpler approaches to verify an extremal as local minimizer for well-known problems in calculus of variations.