4 resultados para Cival penalties

em Digital Commons - Michigan Tech


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) and 317 kW (425 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within an aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). The tests conducted with the engine rated at 365 hp used a 2007 DOC and CPF. The tests conducted with the engine rated at 425 hp used a 2010 DOC and 2007 CPF. Understanding the passive NO2 oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Modeling the passive oxidation of accumulated PM in the CPF will lead to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine, and when the engine is operated at a higher power rating. A test procedure developed by Hutton et al. [1, 2] was modified to improve the ability to model the experimental data and provide additional insight into passively oxidized PM in a partially regenerated CPF. A test procedure was developed to allow PM oxidation rates by NO2 to be determined from engine test cell data. An experimental matrix consisting of CPF inlet temperatures from 250 to 450 °C with varying NOX/PM from 25 to 583and NO2/PM ratios from 5 to 240 was used. SME biodiesel was volumetrically blended with ULSD in 10% (B10) and 20% (B20) portions. This blended fuel was then used to evaluate the effect of biodiesel on passive oxidation rates. Four tests were performed with B10 and four tests with B20. Gathering data to determine the effect of fuel type (ULSD and biodiesel blends) on PM oxidation is the primary goal. The engine used for this testing was then configured to a higher power rating and one of the tests planned was performed. Additional testing is scheduled to take place with ULSD fuel to determine the affect the engine rating has on the PM oxidation. The experimental reaction rates during passive oxidation varied based upon the average CPF temperature, NO2 concentrations, and the NOX/PM ratios for each engine rating and with all fuels. The data analysis requires a high fidelity model that includes NO2 and thermal oxidation mechanisms and back diffusion to determine the details of the PM oxidation process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The combustion strategy in a diesel engine has an impact on the emissions, fuel consumption and the exhaust temperatures. The PM mass retained in the CPF is a function of NO2 and PM concentrations in addition to the exhaust temperatures and the flow rates. Thus the engine combustion strategy affects exhaust characteristics which has an impact on the CPF operation and PM mass retained and oxidized. In this report, a process has been developed to simulate the relationship between engine calibration, performance and HC and PM oxidation in the DOC and CPF respectively. Fuel Rail Pressure (FRP) and Start of Injection (SOI) sweeps were carried out at five steady state engine operating conditions. This data, along with data from a previously carried out surrogate HD-FTP cycle [1], was used to create a transfer function model which estimates the engine out emissions, flow rates, temperatures for varied FRP and SOI over a transient cycle. Four different calibrations (test cases) were considered in this study, which were simulated through the transfer function model and the DOC model [1, 2]. The DOC outputs were then input into a model which simulates the NO2 assisted and thermal PM oxidation inside a CPF. Finally, results were analyzed as to how engine calibration impacts the engine fuel consumption, HC oxidation in the DOC and the PM oxidation in the CPF. Also, active regeneration for various test cases was simulated and a comparative analysis of the fuel penalties involved was carried out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mower is a micro-architecture technique which targets branch misprediction penalties in superscalar processors. It speeds-up the misprediction recovery process by dynamically evicting stale instructions and fixing the RAT (Register Alias Table) using explicit branch dependency tracking. Tracking branch dependencies is accomplished by using simple bit matrices. This low-overhead technique allows overlapping of the recovery process with instruction fetching, renaming and scheduling from the correct path. Our evaluation of the mechanism indicates that it yields performance very close to ideal recovery and provides up to 5% speed-up and 2% reduction in power consumption compared to a traditional recovery mechanism using a reorder buffer and a walker. The simplicity of the mechanism should permit easy implementation of Mower in an actual processor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shippers want to improve their transportation efficiency and rail transportation has the potential to provide an economical alternative to trucking, but it also has potential drawbacks. The pressure to optimize transportation supply chain logistics has resulted in growing interest in multimodal alternatives, such as a combination of truck and rail transportation, but the comparison of multimodal and modal alternatives can be complicated. Shippers in Michigan’s Upper Peninsula (UP) face similar challenges. Adding to the challenge is the distance from major markets and the absence of available facilities for transloading activities. This study reviewed three potential locations for a transload facility (Nestoria, Ishpeming, and Amasa) where truck shipments could be transferred to rail and vice versa. These locations were evaluated on the basis of transportation costs for shippers when compared to the use of single mode transportation by truck to Wisconsin, Chicago, Minneapolis, and Sault Ste. Marie. In addition to shipping costs, the study also evaluated the potential impact of future carbon emission penalties on the shipping cost and the effects of changing fuel prices on shipping cost. The study used data obtained from TRANSEARCH database (2009) and found that although there were slight differences between percent savings for the three locations, any of them could provide potential benefits for movements to Chicago and Minneapolis, as long as final destination could be accessed by rail for delivery. Short haul movements of less than 200 miles (Wisconsin and Sault Ste. Marie) were not cost effective for multimodal transport. The study also found that for every dollar increase in fuel price, cost savings from multimodal option increased by three to five percent, but the inclusion of emission costs would only add one to two percent additional savings. Under a specific case study that addressed shipments by Northern Hardwoods, the most distant locations in Wisconsin would also provide cost savings, partially due to the possibility of using Michigan trucks with higher carrying capacity for the initial movement from the facility to transload location. In addition, Minneapolis movements were found to provide savings for Northern Hardwoods, even without final rail access.