2 resultados para Chemical oxygen demand
em Digital Commons - Michigan Tech
Resumo:
Biochemical processes by chemoautotrophs such as nitrifiers and sulfide and iron oxidizers are used extensively in wastewater treatment. The research described in this dissertation involved the study of two selected biological processes utilized in wastewater treatment mediated by chemoautotrophic bacteria: nitrification (biological removal of ammonia and nitrogen) and hydrogen sulfide (H2S) removal from odorous air using biofiltration. A municipal wastewater treatment plant (WWTP) receiving industrial dyeing discharge containing the azo dye, acid black 1 (AB1) failed to meet discharge limits, especially during the winter. Dyeing discharge mixed with domestic sewage was fed to sequencing batch reactors at 22oC and 7oC. Complete nitrification failure occurred at 7oC with more rapid nitrification failure as the dye concentration increased; slight nitrification inhibition occurred at 22oC. Dye-bearing wastewater reduced chemical oxygen demand (COD) removal at 7oC and 22oC, increased i effluent total suspended solids (TSS) at 7oC, and reduced activated sludge quality at 7oC. Decreasing AB1 loading resulted in partial nitrification recovery. Eliminating the dye-bearing discharge to the full-scale WWTP led to improved performance bringing the WWTP into regulatory compliance. BiofilterTM, a dynamic model describing the biofiltration processes for hydrogen sulfide removal from odorous air emissions, was calibrated and validated using pilot- and full-scale biofilter data. In addition, the model predicted the trend of the measured data under field conditions of changing input concentration and low effluent concentrations. The model demonstrated that increasing gas residence time and temperature and decreasing influent concentration decreases effluent concentration. Model simulations also showed that longer residence times are required to treat loading spikes. BiofilterTM was also used in the preliminary design of a full-scale biofilter for the removal of H2S from odorous air. Model simulations illustrated that plots of effluent concentration as a function of residence time or bed area were useful to characterize and design biofilters. Also, decreasing temperature significantly increased the effluent concentration. Model simulations showed that at a given temperature, a biofilter cannot reduce H2S emissions below a minimum value, no matter how large the biofilter.
Resumo:
Onondaga Lake has received the municipal effluent and industrial waste from the city of Syracuse for more than a century. Historically, 75 metric tons of mercury were discharged to the lake by chlor-alkali facilities. These legacy deposits of mercury now exist primarily in the lake sediments. Under anoxic conditions, methylmercury is produced in the sediments and can be released to the overlying water. Natural sedimentation processes are continuously burying the mercury deeper into the sediments. Eventually, the mercury will be buried to a depth where it no longer has an impact on the overlying water. In the interim, electron acceptor amendment systems can be installed to retard these chemical releases while the lake naturally recovers. Electron acceptor amendment systems are designed to meet the sediment oxygen demand in the sediment and maintain manageable hypolimnion oxygen concentrations. Historically, designs of these systems have been under designed resulting in failure. This stems from a mischaracterization of the sediment oxygen demand. Turbulence at the sediment water interface has been shown to impact sediment oxygen demand. The turbulence introduced by the electron amendment system can thus increase the sediment oxygen demand, resulting in system failure if turbulence is not factored into the design. Sediment cores were gathered and operated to steady state under several well characterized turbulence conditions. The relationship between sediment oxygen/nitrate demand and turbulence was then quantified and plotted. A maximum demand was exhibited at or above a fluid velocity of 2.0 mm•s-1. Below this velocity, demand decreased rapidly with fluid velocity as zero velocity was approached. Similar relationships were displayed by both oxygen and nitrate cores.