2 resultados para Chemical method

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The copper mining boom in Michigan's Upper Peninsula ended in the mid-1960s, but the historical mining still affects the region to this day. Earlier studies conducted in the Keweenaw have shown that trace metals in the sediments negatively affect benthic macroinvertebrate populations. However, because the concentrations of trace metals that are observed to be toxic often differ significantly between the laboratory and the environment, a better method for determining toxic levels of trace metals in the natural environment is desirable in order to establish surface water quality guidelines that effectively protect aquatic life. There were four research objectives for this research project. First, to determine if trace-level concentrations of copper can result in detectable ecological impacts even in the presence of high dissolved organic carbon (DOC). Second, to determine if there is a "safe" concentration of total dissolved copper below which there is little to no ecological impairment. Third, to establish which streams in the Keweenaw Peninsula have been most impacted by elevated levels of total dissolved copper. Fourth, to use this information to evaluate revisions to the water quality criterion for copper that were recently proposed by the Michigan Department of Environmental Quality (MDEQ). In order to collect water quality and macroinvertebrate data, two sampling surveys of approximately 50 streams were completed in the spring and summer of 2012. Our findings demonstrate that negative ecological impacts can be detected even in the presence of high concentrations of DOC. The majority of surveyed streams showed evidence of total dissolved copper concentrations that were elevated above background levels. Our findings suggest that there are detectable negative impacts below the current water quality standard for copper in many Keweenaw streams. The diversity of benthic macroinvertebrates and the number of species present has been reduced as a result of exposure to copper. Additionally, the multimetric approach used by MDEQ is unable to detect copper impairment in local streams due to the use of several insensitive metrics. The proposed changes to the copper criterion would increase the amount of total dissolved copper allowable despite the fact that approximately 25% of streams sampled have aquatic chemistries that would leave them vulnerable to high levels of copper ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Roads and highways present a unique challenge to wildlife as they exhibit substantial impacts on the surrounding ecosystem through the interruption of a number of ecological processes. With new roads added to the national highway system every year, an understanding of these impacts is required for effective mitigation of potential environmental impacts. A major contributor to these negative effects is the deposition of chemicals used in winter deicing activities to nearby surface waters. These chemicals often vary in composition and may affect freshwater species differently. The negative impacts of widespread deposition of sodium chloride (NaCl) have prompted a search for an `environmentally friendly' alternative. However, little research has investigated the potential environmental effects of widespread use of these alternatives. Herein, I detail the results of laboratory tests and field surveys designed to determine the impacts of road salt (NaCl) and other chemical deicers on amphibian communities in Michigan's Upper Peninsula. Using larval amphibians I demonstrate the lethal impacts of a suite of chemical deicers on this sensitive, freshwater species. Larval wood frogs (Lithobates sylvatica) were tolerant of short-term (96 hours) exposure to urea (CH4N2O), sodium chloride (NaCl), and magnesium chloride (MgCl2). However, these larvae were very sensitive to acetate products (C8H12CaMgO8, CH3COOK) and calcium chloride (CaCl2). These differences in tolerance suggest that certain deicers may be more harmful to amphibians than others. Secondly, I expanded this analysis to include an experiment designed to determine the sublethal effects of chronic exposure to environmentally realistic concentrations of NaCl on two unique amphibian species, L. sylvatica and green frogs (L. clamitans). L. sylvatica tend to breed in small, ephemeral wetlands and metamorphose within a single season. However, L. clamitans breed primarily in more permanent wetlands and often remain as tadpoles for one year or more. These species employ different life history strategies in this region which may influence their response to chronic NaCl exposure. Both species demonstrated potentially harmful effects on individual fitness. L. sylvatica larvae had a high incidence of edema suggesting the NaCl exposure was a significant physiologic stressor to these larvae. L. clamitans larvae reduced tail length during their exposure which may affect adult fitness of these individuals. In order to determine the risk local amphibians face when using these roadside pools, I conducted a survey of the spatial distribution of chloride in the three northernmost counties of Michigan. This area receives a relatively low amount of NaCl which is confined to state and federal highways. The chloride concentrations in this region were much lower than those in urban systems; however, amphibians breeding in the local area may encounter harmful chloride levels arising from temporal variations in hydroperiods. Spatial variation of chloride levels suggests the road-effect zone for amphibians may be as large as 1000 m from a salt-treated highway. Lastly, I performed an analysis of the use of specific conductance to predict chloride concentrations in natural surface water bodies. A number of studies have used this regression to predict chloride concentrations from measurements of specific conductance. This method is often chosen in the place of ion chromatography due to budget and time constraints. However, using a regression method to characterize this relationship does not result in accurate chloride ion concentration estimates.