9 resultados para Centre for Nano Science and Engineering

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attempts to strengthen a chromium-modified titanium trialuminide by a combination of grain size refinement and dispersoid strengthening led to a new means to synthesize such materials. This Reactive Mechanical Alloying/Milling process uses in situ reactions between the metallic powders and elements from a process control agent and/or a gaseous environment to assemble a dispersed small hard particle phase within the matrix by a bottom-up approach. In the current research milled powders of the trialuminide alloy along with titanium carbide were produced. The amount of the carbide can be varied widely with simple processing changes and in this case the milling process created trialuminide grain sizes and carbide particles that are the smallest known from such a process. Characterization of these materials required the development of x-ray diffraction means to determine particle sizes by deconvoluting and synthesizing components of the complex multiphase diffraction patterns and to carry out whole pattern analysis to analyze the diffuse scattering that developed from larger than usual highly defective grain boundary regions. These identified regions provide an important mass transport capability in the processing and not only facilitate the alloy development, but add to the understanding of the mechanical alloying process. Consolidation of the milled powder that consisted of small crystallites of the alloy and dispersed carbide particles two nanometers in size formed a unique, somewhat coarsened, microstructure producing an ultra-high strength solid material composed of the chromium-modified titanium trialuminide alloy matrix with small platelets of the complex carbides Ti2AlC and Ti3AlC2. This synthesis process provides the unique ability to nano-engineer a wide variety of composite materials, or special alloys, and has shown the ability to be extended to a wide variety of metallic materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is ample evidence of a longstanding and pervasive discourse positioning students, and engineering students in particular, as “bad writers.” This is a discourse perpetuated within the academy, the workplace, and society at large. But what are the effects of this discourse? Are students aware faculty harbor the belief students can’t write? Is student writing or confidence in their writing influenced by the negative tone of the discourse? This dissertation attempts to demonstrate that a discourse disparaging student writing exists among faculty, across disciplines, but particularly within the engineering disciplines, as well as to identify the reach of that discourse through the deployment of two attitudinal surveys—one for students, across disciplines, at Michigan Technological University and one for faculty, across disciplines at universities and colleges both within the United States and internationally. This project seeks to contribute to a more accurate and productive discourse about engineering students, and more broadly, all students, as writers—one that focuses on competencies rather than incompetence, one that encourages faculty to find new ways to characterize students as writers, and encourages faculty to recognize the limits of the utility of practitioner lore.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global warming issue becomes more significant to human beings and other organisms on the earth. Among many greenhouse gases, carbon dioxide (CO2) has the largest contribution to global warming. To find an effective way to utilize the greenhouse gas is urgent. It is the best way to convert CO2 to useful compounds. CO2 reforming of methane is an attractive process to convert CO2 and methane into synthesis gas (CO/H2), which can be used as a feedstock for gasoline, methanol, and other hydrocarbons. Nickel and cobalt were found to have good activity for CO2 reforming. However, they have a poor stability due to carbon deposition. This research developed efficient Ni-Co solid solution catalysts with excellent activities and high stability for CO2 reforming of methane. First, the structure of binary oxide solid solution of nickel and cobalt was investigated. It was found that while the calcination of Ni(NO3)2 and Co(NO3)2 mixture with 1:1 molar ratio at a high temperature above 800 oC generated NiO-CoO solid solution, only Ni3O4-Co3O4 solid solution was observed after the calcination at a low temperature of 500 oC. Furthermore, if the calcination was carried out at a medium temperature arranged from 600 to 700 oC, both NiO-CoO and Ni3O4-Co3O4 solid solutions can be formed. This occurred because Co3O4 can induce the formation of Ni3O4, whereas NiO can stabilize CoO. In addition, the lattice parameter of Ni3O4, which was predicted by using Vegard’s Law, is 8.2054 Å. As a very important part of this dissertation, Ni-Co solid solution was evaluated as catalysts for CO2 reforming of methane. It was revealed that nickel-cobalt solid solution showed excellent catalytic performance and high stability for CO2 reforming of methane. However, the stability of Ni-Co solid solution catalysts is strongly dependent on their composition and preparation condition. The optimum composition is 50%Ni-50%Co. Furthermore, the structure of Ni-Co catalysts was characterized by XRD, Vvis, TPR, TPD, BET, AES, TEM, XANES and EXAFS. The relationship between the structure and the catalytic performance was established: (1) The reduced NiO-CoO solid solution possesses better catalytic performance and stability than the reduced Ni3O4-Co3O4 solid solution. (2) Ni is richer on surface in Ni-Co catalysts. And (3) the reduction of Ni-Co-O solid solution generated two types of particles, small and large particles. The small ones are dispersed on large ones as catalytic component.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal stability of nanograined metals can be difficult to attain due to the large driving force for grain growth that arises from the significant boundary area constituted by the nanostructure. Kinetic approaches for stabilization of the nanostructure effective at low homologous temperatures often fail at higher homologous temperatures. Thermodynamic approaches for thermal stabilization may offer higher temperature stability. In this research, modest alloying of aluminum with solute (1 at.% Sc, Yb, or Sr) was examined as a means to thermodynamically stabilize a bulk nanostructure at elevated temperatures. After using melt-spinning and ball-milling to create an extended solid-solution and nanostructure with average grain size on the order of 30-45 nm, 1 h annealing treatments at 673 K (0.72 Tm) , 773 K (0.83 Tm) , and 873 K (0.94 Tm) were applied. The alloys remain nanocrystalline (<100 nm) as measured by Warren-Averbach Fourier analysis of x-ray diffraction peaks and direct observation of TEM dark field micrographs, with the efficacy of stabilization: Sr>Yb>Sc. Disappearance of intermetallic phases in the Sr and Yb alloys in the x-ray diffraction spectra are observed to occur coincident with the stabilization after annealing, suggesting that precipitates dissolve and the boundaries are enriched with solute. Melt-spinning has also been shown to be an effective process to produce a class of ordered, but non-periodic crystals called quasicrystals. However, many of the factors related to the creation of the quasicrystals through melt-spinning are not optimized for specific chemistries and alloy systems. In a related but separate aspect of this research, meltspinning was utilized to create metastable quasicrystalline Al6Mn in an α-Al matrix through rapid solidification of Al-8Mn (by mol) and Al-10Mn (by mol) alloys. Wheel speed of the melt-spinning wheel and orifice diameter of the tube reservoir were varied to determine their effect on the resulting volume proportions of the resultant phases using integrated areas of collected x-ray diffraction spectra. The data were then used to extrapolate parameters for the Al-10Mn alloy which consistently produced Al6Mn quasicrystal with almost complete suppression of the equilibrium Al6Mn orthorhombic phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-dimensional flow visualization plays an essential role in many areas of science and engineering, such as aero- and hydro-dynamical systems which dominate various physical and natural phenomena. For popular methods such as the streamline visualization to be effective, they should capture the underlying flow features while facilitating user observation and understanding of the flow field in a clear manner. My research mainly focuses on the analysis and visualization of flow fields using various techniques, e.g. information-theoretic techniques and graph-based representations. Since the streamline visualization is a popular technique in flow field visualization, how to select good streamlines to capture flow patterns and how to pick good viewpoints to observe flow fields become critical. We treat streamline selection and viewpoint selection as symmetric problems and solve them simultaneously using the dual information channel [81]. To the best of my knowledge, this is the first attempt in flow visualization to combine these two selection problems in a unified approach. This work selects streamline in a view-independent manner and the selected streamlines will not change for all viewpoints. My another work [56] uses an information-theoretic approach to evaluate the importance of each streamline under various sample viewpoints and presents a solution for view-dependent streamline selection that guarantees coherent streamline update when the view changes gradually. When projecting 3D streamlines to 2D images for viewing, occlusion and clutter become inevitable. To address this challenge, we design FlowGraph [57, 58], a novel compound graph representation that organizes field line clusters and spatiotemporal regions hierarchically for occlusion-free and controllable visual exploration. We enable observation and exploration of the relationships among field line clusters, spatiotemporal regions and their interconnection in the transformed space. Most viewpoint selection methods only consider the external viewpoints outside of the flow field. This will not convey a clear observation when the flow field is clutter on the boundary side. Therefore, we propose a new way to explore flow fields by selecting several internal viewpoints around the flow features inside of the flow field and then generating a B-Spline curve path traversing these viewpoints to provide users with closeup views of the flow field for detailed observation of hidden or occluded internal flow features [54]. This work is also extended to deal with unsteady flow fields. Besides flow field visualization, some other topics relevant to visualization also attract my attention. In iGraph [31], we leverage a distributed system along with a tiled display wall to provide users with high-resolution visual analytics of big image and text collections in real time. Developing pedagogical visualization tools forms my other research focus. Since most cryptography algorithms use sophisticated mathematics, it is difficult for beginners to understand both what the algorithm does and how the algorithm does that. Therefore, we develop a set of visualization tools to provide users with an intuitive way to learn and understand these algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Space-based (satellite, scientific probe, space station, etc.) and millimeter – to – microscale (such as are used in high power electronics cooling, weapons cooling in aircraft, etc.) condensers and boilers are shear/pressure driven. They are of increasing interest to system engineers for thermal management because flow boilers and flow condensers offer both high fluid flow-rate-specific heat transfer capacity and very low thermal resistance between the fluid and the heat exchange surface, so large amounts of heat may be removed using reasonably-sized devices without the need for excessive temperature differences. However, flow stability issues and degradation of performance of shear/pressure driven condensers and boilers due to non-desirable flow morphology over large portions of their lengths have mostly prevented their use in these applications. This research is part of an ongoing investigation seeking to close the gap between science and engineering by analyzing two key innovations which could help address these problems. First, it is recommended that the condenser and boiler be operated in an innovative flow configuration which provides a non-participating core vapor stream to stabilize the annular flow regime throughout the device length, accomplished in an energy-efficient manner by means of ducted vapor re-circulation. This is demonstrated experimentally. Second, suitable pulsations applied to the vapor entering the condenser or boiler (from the re-circulating vapor stream) greatly reduce the thermal resistance of the already effective annular flow regime. For experiments reported here, application of pulsations increased time-averaged heat-flux up to 900 % at a location within the flow condenser and up to 200 % at a location within the flow boiler, measured at the heat-exchange surface. Traditional fully condensing flows, reported here for comparison purposes, show similar heat-flux enhancements due to imposed pulsations over a range of frequencies. Shear/pressure driven condensing and boiling flow experiments are carried out in horizontal mm-scale channels with heat exchange through the bottom surface. The sides and top of the flow channel are insulated. The fluid is FC-72 from 3M Corporation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A silicon-based microcell was fabricated with the potential for use in in-situ transmission electron microscopy (TEM) of materials under plasma processing. The microcell consisted of 50 nm-thick film of silicon nitride observation window with 60μm distance between two electrodes. E-beam scattering Mont Carlo simulation showed that the silicon nitride thin film would have very low scattering effect on TEM primary electron beam accelerated at 200 keV. Only 4.7% of primary electrons were scattered by silicon nitride thin film and the Ar gas (60 μm thick at 1 atm pressure) filling the space between silicon nitride films. Theoretical calculation also showed low absorption of high-energy e-beam electrons. Because the plasma cell needs to survive the high vacuum TEM chamber while holding 1 atm internal pressure, a finite element analysis was performed to find the maximum stress the low-stress silicon nitride thin film experienced under pressure. Considering the maximum burst stress of low-stress silicon nitride thin film, the simulation results showed that the 50 nm silicon nitride thin film can be used in TEM under 1 atm pressure as the observation window. Ex-situ plasma generation experiment demonstrated that air plasma can be ignited at DC voltage of 570. A Scanning electron microscopy (SEM) analysis showed that etching and deposition occurred during the plasma process and larger dendrites formed on the positive electrode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene, which is a two-dimensional carbon material, exhibits unique properties that promise its potential applications in photovoltaic devices. Dye-sensitized solar cell (DSSC) is a representative of the third generation photovoltaic devices. Therefore, it is important to synthesize graphene with special structures, which possess excellent properties for dye-sensitized solar cells. This dissertation research was focused on (1) the effect of oxygen content on the structure of graphite oxide, (2) the stability of graphene oxide solution, (3) the application of graphene precipitate from graphene oxide solution as counter electrode for DSSCs, (4) the development of a novel synthesis method for the three-dimensional graphene with honeycomb-like structure, and (5) the exploration of honeycomb structured graphene (HSG) as counter electrodes for DSSCs. Graphite oxide is a crucial precursor to synthesize graphene sheets via chemical exfoliation method. The relationship between the oxygen content and the structures of graphite oxides was still not explored. In this research, the oxygen content of graphite oxide is tuned by changing the oxidation time and the effect of oxygen content on the structure of graphite oxide was evaluated. It has been found that the saturated ratio of oxygen to carbon is 0.47. The types of functional groups in graphite oxides, which are epoxy, hydroxyl, and carboxylgroups, are independent of oxygen content. However, the interplanar space and BET surface area of graphite oxide linearly increases with increasing O/C ratio. Graphene oxide (GO) can easily dissolve in water to form a stable homogeneous solution, which can be used to fabricate graphene films and graphene based composites. This work is the first research to evaluate the stability of graphene oxide solution. It has been found that the introduction of strong electrolytes (HCl, LiOH, LiCl) into GO solution can cause GO precipitation. This indicates that the electrostatic repulsion plays a critical role in stabilizing aqueous GO solution. Furthermore, the HCl-induced GO precipitation is a feasible approach to deposit GO sheets on a substrate as a Pt-free counter electrode for a dye-sensitized solar cell (DSSC), which exhibited 1.65% of power conversion efficiency. To explore broad and practical applications, large-scale synthesis with controllable integration of individual graphene sheets is essential. A novel strategy for the synthesis of graphene sheets with three-dimensional (3D) Honeycomb-like structure has been invented in this project based on a simple and novel chemical reaction (Li2O and CO to graphene and Li2CO3). The simultaneous formation of Li2CO3 with graphene not only can isolate graphene sheets from each other to prevent graphite formation during the process, but also determine the locally curved shape of graphene sheets. After removing Li2CO3, 3D graphene sheets with a honeycomb-like structure were obtained. This would be the first approach to synthesize 3D graphene sheets with a controllable shape. Furthermore, it has been demonstrated that the 3D Honeycomb-Structured Graphene (HSG) possesses excellent electrical conductivity and high catalytic activity. As a result, DSSCs with HSG counter electrodes exhibit energy conversion efficiency as high as 7.8%, which is comparable to that of an expensive noble Pt electrode.