2 resultados para Central atlantic paleogeography
em Digital Commons - Michigan Tech
Resumo:
Accurate seasonal to interannual streamflow forecasts based on climate information are critical for optimal management and operation of water resources systems. Considering most water supply systems are multipurpose, operating these systems to meet increasing demand under the growing stresses of climate variability and climate change, population and economic growth, and environmental concerns could be very challenging. This study was to investigate improvement in water resources systems management through the use of seasonal climate forecasts. Hydrological persistence (streamflow and precipitation) and large-scale recurrent oceanic-atmospheric patterns such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the Pacific North American (PNA), and customized sea surface temperature (SST) indices were investigated for their potential to improve streamflow forecast accuracy and increase forecast lead-time in a river basin in central Texas. First, an ordinal polytomous logistic regression approach is proposed as a means of incorporating multiple predictor variables into a probabilistic forecast model. Forecast performance is assessed through a cross-validation procedure, using distributions-oriented metrics, and implications for decision making are discussed. Results indicate that, of the predictors evaluated, only hydrologic persistence and Pacific Ocean sea surface temperature patterns associated with ENSO and PDO provide forecasts which are statistically better than climatology. Secondly, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river-reservoir systems. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas. Lastly, a simplified two-stage stochastic economic-optimization model was proposed to investigate improvement in water use efficiency and the potential value of using seasonal forecasts, under the assumption of optimal decision making under uncertainty. Model results demonstrate that incorporating the probabilistic inflow forecasts into the optimization model can provide a significant improvement in seasonal water contract benefits over climatology, with lower average deficits (increased reliability) for a given average contract amount, or improved mean contract benefits for a given level of reliability compared to climatology. The results also illustrate the trade-off between the expected contract amount and reliability, i.e., larger contracts can be signed at greater risk.
Resumo:
Nitrogen oxides play a crucial role in the budget of tropospheric ozone (O sub(3)) and the formation of the hydroxyl radical. Anthropogenic activities and boreal wildfires are large sources of emissions in the atmosphere. However, the influence of the transport of these emissions on nitrogen oxides and O sub(3) levels at hemispheric scales is not well understood, in particular due to a lack of nitrogen oxides measurements in remote regions. In order to address these deficiencies, measurements of NO, NO sub(2) and NO sub(y) (total reactive nitrogen oxides) were made in the lower free troposphere (FT) over the central North Atlantic region (Pico Mountain station, 38 degree N 28 degree W, 2.3 km asl) from July 2002 to August 2005. These measurements reveal a well-defined seasonal cycle of nitrogen oxides (NO sub(x) = NO+NO sub(2) and NO sub(y)) in the background central North Atlantic lower FT, with higher mixing ratios during the summertime. Observed NO sub(x) and NO sub(y) levels are consistent with long-range transport of emissions, but with significant removal en-route to the measurement site. Reactive nitrogen largely exists in the form of PAN and HNO sub(3) ( similar to 80-90% of NO sub(y)) all year round. A shift in the composition of NO sub(y) from dominance of PAN to dominance of HNO sub(3) occurs from winter-spring to summer-fall, as a result of changes in temperature and photochemistry over the region. Analysis of the long-range transport of boreal wildfire emissions on nitrogen oxides provides evidence of the very large-scale impacts of boreal wildfires on the tropospheric NO sub(x) and O sub(3) budgets. Boreal wildfire emissions are responsible for significant shifts in the nitrogen oxides distributions toward higher levels during the summer, with medians of NO sub(y) (117-175 pptv) and NO sub(x) (9-30 pptv) greater in the presence of boreal wildfire emissions. Extreme levels of NO sub(x) (up to 150 pptv) and NO sub(y) (up to 1100 pptv) observed in boreal wildfire plumes suggest that decomposition of PAN to NO sub(x) is a significant source of NO sub(x), and imply that O sub(3) formation occurs during transport. Ozone levels are also significantly enhanced in boreal wildfire plumes. However, a complex behavior of O sub(3) is observed in the plumes, which varies from significant to lower O sub(3) production to O sub(3) destruction. Long-range transport of anthropogenic emissions from North America also has a significant influence on the regional NO sub(x) and O sub(3) budgets. Transport of pollution from North America causes significant enhancements on nitrogen oxides year-round. Enhancements of CO, NO sub(y) and NO sub(x) indicate that, consistent with previous studies, more than 95% of the NO sub(x) emitted over the U.S. is removed before and during export out of the U.S. boundary layer. However, about 30% of the NO sub(x) emissions exported out of the U.S. boundary layer remain in the airmasses. Since the lifetime of NO sub(x) is shorter than the transport timescale, PAN decomposition and potentially photolysis of HNO sub(3) provide a supply of NO sub(x) over the central North Atlantic lower FT. Observed Delta O sub(3)/ Delta NO sub(y) and large NO sub(y) levels remaining in the North American plumes suggest potential O sub(3) formation well downwind from North America. Finally, a comparison of the nitrogen oxides measurements with results from the global chemical transport (GCT) model GEOS-Chem identifies differences between the observations and the model. GEOS-Chem reproduces the seasonal variation of nitrogen oxides over the central North Atlantic lower FT, but does not capture the magnitude of the cycles. Improvements in our understanding of nitrogen oxides chemistry in the remote FT and emission sources are necessary for the current GCT models to adequately estimate the impacts of emissions on tropospheric NO sub(x) and the resulting impacts on the O sub(3) budget.