3 resultados para Cementation velocity

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The numerical solution of the incompressible Navier-Stokes equations offers an alternative to experimental analysis of fluid-structure interaction (FSI). We would save a lot of time and effort and help cut back on costs, if we are able to accurately model systems by these numerical solutions. These advantages are even more obvious when considering huge structures like bridges, high rise buildings or even wind turbine blades with diameters as large as 200 meters. The modeling of such processes, however, involves complex multiphysics problems along with complex geometries. This thesis focuses on a novel vorticity-velocity formulation called the Kinematic Laplacian Equation (KLE) to solve the incompressible Navier-stokes equations for such FSI problems. This scheme allows for the implementation of robust adaptive ordinary differential equations (ODE) time integration schemes, allowing us to tackle each problem as a separate module. The current algortihm for the KLE uses an unstructured quadrilateral mesh, formed by dividing each triangle of an unstructured triangular mesh into three quadrilaterals for spatial discretization. This research deals with determining a suitable measure of mesh quality based on the physics of the problems being tackled. This is followed by exploring methods to improve the quality of quadrilateral elements obtained from the triangles and thereby improving the overall mesh quality. A series of numerical experiments were designed and conducted for this purpose and the results obtained were tested on different geometries with varying degrees of mesh density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The numerical solution of the incompressible Navier-Stokes Equations offers an effective alternative to the experimental analysis of Fluid-Structure interaction i.e. dynamical coupling between a fluid and a solid which otherwise is very complex, time consuming and very expensive. To have a method which can accurately model these types of mechanical systems by numerical solutions becomes a great option, since these advantages are even more obvious when considering huge structures like bridges, high rise buildings, or even wind turbine blades with diameters as large as 200 meters. The modeling of such processes, however, involves complex multiphysics problems along with complex geometries. This thesis focuses on a novel vorticity-velocity formulation called the KLE to solve the incompressible Navier-stokes equations for such FSI problems. This scheme allows for the implementation of robust adaptive ODE time integration schemes and thus allows us to tackle the various multiphysics problems as separate modules. The current algorithm for KLE employs a structured or unstructured mesh for spatial discretization and it allows the use of a self-adaptive or fixed time step ODE solver while dealing with unsteady problems. This research deals with the analysis of the effects of the Courant-Friedrichs-Lewy (CFL) condition for KLE when applied to unsteady Stoke’s problem. The objective is to conduct a numerical analysis for stability and, hence, for convergence. Our results confirmthat the time step ∆t is constrained by the CFL-like condition ∆t ≤ const. hα, where h denotes the variable that represents spatial discretization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used the Green's functions from auto-correlations and cross-correlations of seismic ambient noise to monitor temporal velocity changes in the subsurface at Villarrica volcano in the Southern Andes of Chile. Campaigns were conducted from March to October 2010 and February to April 2011 with 8 broadband and 6 short-period stations, respectively. We prepared the data by removing the instrument response, normalizing with a root-mean-square method, whitening the spectra, and filtering from 1 to 10 Hz. This frequency band was chosen based on the relatively high background noise level in that range. Hour-long auto- and cross-correlations were computed and the Green's functions stacked by day and total time. To track the temporal velocity changes we stretched a 24 hour moving window of correlation functions from 90% to 110% of the original and cross correlated them with the total stack. All of the stations' auto-correlations detected what is interpreted as an increase in velocity in 2010, with an average increase of 0.13%. Cross-correlations from station V01, near the summit, to the other stations show comparable changes that are also interpreted as increases in velocity. We attribute this change to the closing of cracks in the subsurface due either to seasonal snow loading or regional tectonics. In addition to the common increase in velocity across the stations, there are excursions in velocity on the same order lasting several days. Amplitude decreases as the station's distance from the vent increases suggesting these excursions may be attributed to changes within the volcanic edifice. In at least two occurrences the amplitudes at stations V06 and V07, the stations farthest from the vent, are smaller. Similar short temporal excursions were seen in the auto-correlations from 2011, however, there was little to no increase in the overall velocity.