2 resultados para Casing
em Digital Commons - Michigan Tech
Resumo:
Autonomous system applications are typically limited by the power supply operational lifetime when battery replacement is difficult or costly. A trade-off between battery size and battery life is usually calculated to determine the device capability and lifespan. As a result, energy harvesting research has gained importance as society searches for alternative energy sources for power generation. For instance, energy harvesting has been a proven alternative for powering solar-based calculators and self-winding wristwatches. Thus, the use of energy harvesting technology can make it possible to assist or replace batteries for portable, wearable, or surgically-implantable autonomous systems. Applications such as cardiac pacemakers or electrical stimulation applications can benefit from this approach since the number of surgeries for battery replacement can be reduced or eliminated. Research on energy scavenging from body motion has been investigated to evaluate the feasibility of powering wearable or implantable systems. Energy from walking has been previously extracted using generators placed on shoes, backpacks, and knee braces while producing power levels ranging from milliwatts to watts. The research presented in this paper examines the available power from walking and running at several body locations. The ankle, knee, hip, chest, wrist, elbow, upper arm, side of the head, and back of the head were the chosen target localizations. Joints were preferred since they experience the most drastic acceleration changes. For this, a motor-driven treadmill test was performed on 11 healthy individuals at several walking (1-4 mph) and running (2-5 mph) speeds. The treadmill test provided the acceleration magnitudes from the listed body locations. Power can be estimated from the treadmill evaluation since it is proportional to the acceleration and frequency of occurrence. Available power output from walking was determined to be greater than 1mW/cm³ for most body locations while being over 10mW/cm³ at the foot and ankle locations. Available power from running was found to be almost 10 times higher than that from walking. Most energy harvester topologies use linear generator approaches that are well suited to fixed-frequency vibrations with sub-millimeter amplitude oscillations. In contrast, body motion is characterized with a wide frequency spectrum and larger amplitudes. A generator prototype based on self-winding wristwatches is deemed to be appropriate for harvesting body motion since it is not limited to operate at fixed-frequencies or restricted displacements. Electromagnetic generation is typically favored because of its slightly higher power output per unit volume. Then, a nonharmonic oscillating rotational energy scavenger prototype is proposed to harness body motion. The electromagnetic generator follows the approach from small wind turbine designs that overcome the lack of a gearbox by using a larger number of coil and magnets arrangements. The device presented here is composed of a rotor with multiple-pole permanent magnets having an eccentric weight and a stator composed of stacked planar coils. The rotor oscillations induce a voltage on the planar coil due to the eccentric mass unbalance produced by body motion. A meso-scale prototype device was then built and evaluated for energy generation. The meso-scale casing and rotor were constructed on PMMA with the help of a CNC mill machine. Commercially available discrete magnets were encased in a 25mm rotor. Commercial copper-coated polyimide film was employed to manufacture the planar coils using MEMS fabrication processes. Jewel bearings were used to finalize the arrangement. The prototypes were also tested at the listed body locations. A meso-scale generator with a 2-layer coil was capable to extract up to 234 µW of power at the ankle while walking at 3mph with a 2cm³ prototype for a power density of 117 µW/cm³. This dissertation presents the analysis of available power from walking and running at different speeds and the development of an unobtrusive miniature energy harvesting generator for body motion. Power generation indicates the possibility of powering devices by extracting energy from body motion.
Resumo:
Since the introduction of the rope-pump in Nicaragua in the 1990s, the dependence on wells in rural areas has grown steadily. However, little or no attention is paid to rope-pump well performance after installation. Due to financial restraints, groundwater resource monitoring using conventional testing methods is too costly and out of reach of rural municipalities. Nonetheless, there is widespread agreement that without a way to quantify the changes in well performance over time, prioritizing regulatory actions is impossible. A manual pumping test method is presented, which at a fraction of the cost of a conventional pumping test, measures the specific capacity of rope-pump wells. The method requires only sight modifcations to the well and reasonable limitations on well useage prior to testing. The pumping test was performed a minimum of 33 times in three wells over an eight-month period in a small rural community in Chontales, Nicaragua. Data was used to measure seasonal variations in specific well capacity for three rope-pump wells completed in fractured crystalline basalt. Data collected from the tests were analyzed using four methods (equilibrium approximation, time-drawdown during pumping, time-drawdown during recovery, and time-drawdown during late-time recovery) to determine the best data-analyzing method. One conventional pumping test was performed to aid in evaluating the manual method. The equilibrim approximation can be performed while in the field with only a calculator and is the most technologically appropriate method for analyzing data. Results from this method overestimate specific capacity by 41% when compared to results from the conventional pumping test. The other analyes methods, requiring more sophisticated tools and higher-level interpretation skills, yielded results that agree to within 14% (pumping phase), 31% (recovery phase) and 133% (late-time recovery) of the conventional test productivity value. The wide variability in accuracy results principally from difficulties in achieving equilibrated pumping level and casing storage effects in the puping/recovery data. Decreases in well productivity resulting from naturally occuring seasonal water-table drops varied from insignificant in two wells to 80% in the third. Despite practical and theoretical limitations on the method, the collected data may be useful for municipal institutions to track changes in well behavior, eventually developing a database for planning future ground water development projects. Furthermore, the data could improve well-users’ abilities to self regulate well usage without expensive aquifer characterization.