4 resultados para Case method
em Digital Commons - Michigan Tech
Resumo:
This technical report discusses the application of the Lattice Boltzmann Method (LBM) and Cellular Automata (CA) simulation in fluid flow and particle deposition. The current work focuses on incompressible flow simulation passing cylinders, in which we incorporate the LBM D2Q9 and CA techniques to simulate the fluid flow and particle loading respectively. For the LBM part, the theories of boundary conditions are studied and verified using the Poiseuille flow test. For the CA part, several models regarding simulation of particles are explained. And a new Digital Differential Analyzer (DDA) algorithm is introduced to simulate particle motion in the Boolean model. The numerical results are compared with a previous probability velocity model by Masselot [Masselot 2000], which shows a satisfactory result.
Resumo:
Ensuring water is safe at source and point-of-use is important in areas of the world where drinking water is collected from communal supplies. This report describes a study in rural Mali to determine the appropriateness of assumptions common among development organizations that drinking water will remain safe at point-of-use if collected from a safe (improved) source. Water was collected from ten sources (borehole wells with hand pumps, and hand-dug wells) and forty-five households using water from each source type. Water quality was evaluated seasonally (quarterly) for levels of total coliform, E.coli, and turbidity. Microbial testing was done using the 3M Petrifilm™ method. Turbidity testing was done using a turbidity tube. Microbial testing results were analyzed using statistical tests including Kruskal-Wallis, Mann Whitney, and analysis of variance. Results show that water from hand pumps did not contain total coliform or E.coli and had turbidity under 5 NTUs, whereas water from dug wells had high levels of bacteria and turbidity. However water at point-of-use (household) from hand pumps showed microbial contamination - at times being indistinguishable from households using dug wells - indicating a decline in water quality from source to point-of-use. Chemical treatment at point-of-use is suggested as an appropriate solution to eliminating any post-source contamination. Additionally, it is recommended that future work be done to modify existing water development strategies to consider water quality at point-of-use.
Resumo:
Disturbances in power systems may lead to electromagnetic transient oscillations due to mismatch of mechanical input power and electrical output power. Out-of-step conditions in power system are common after the disturbances where the continuous oscillations do not damp out and the system becomes unstable. Existing out-of-step detection methods are system specific as extensive off-line studies are required for setting of relays. Most of the existing algorithms also require network reduction techniques to apply in multi-machine power systems. To overcome these issues, this research applies Phasor Measurement Unit (PMU) data and Zubov’s approximation stability boundary method, which is a modification of Lyapunov’s direct method, to develop a novel out-of-step detection algorithm. The proposed out-of-step detection algorithm is tested in a Single Machine Infinite Bus system, IEEE 3-machine 9-bus, and IEEE 10-machine 39-bus systems. Simulation results show that the proposed algorithm is capable of detecting out-of-step conditions in multi-machine power systems without using network reduction techniques and a comparative study with an existing blinder method demonstrate that the decision times are faster. The simulation case studies also demonstrate that the proposed algorithm does not depend on power system parameters, hence it avoids the need of extensive off-line system studies as needed in other algorithms.
Resumo:
The use of intriguing open-ended quick-write prompts within the Basotho science classroom could potentially provide a way for secondary teachers in Lesotho to have a time-efficient alternative to stimulate student thinking and increase critical thinking or application of scientific principles. Writing can be used as a powerful means to improve the achievement of students across many subject areas, including the sciences (Moore, 1993; Rivard, 1994; Rillero, Zambo, Cleland, and Ryan, 1996; Greenstein, 2013). This study focuses on the use of a non-traditional nor extensively studied writing method that could potentially support learning in science. A quasi-experimental research design, with a control and experimental group, was applied. The study was conducted at two schools, with one experimental classroom in one school and a second control group classroom in the second school for a period of 4 weeks. 51 Form B (US Grade 9 equivalent) students participated as the experimental group and 43 Form B students as the control group. In an effort to assess learning achievement, a 1 hour (35 mark) pre-test evaluation was made by and given to students by Basotho teachers at the beginning of this study to have an idea of student’s previous knowledge. Topics covered were Static Electricity, Current Electricity, Electromagnetic Waves, and Chemistry of Water. After the experimental trial period, an almost completely identical post-test evaluation was given to students in the same fashion to observe and compare gains in achievement. Test data was analyzed using an inferential statistics procedure that compared means and gains in knowledge made by the experimental and control groups. Difference between the gains of mean pre-test and post-test scores were statistically significant within each group, but were not statistically significant when the control and experimental groups were compared. Therefore, there was no clear practical effect. Qualitative data from teachers’ journals and students’ written feedback provides insight on the assessments, incorporation of the teaching method, and the development of participating students. Both mid and post-study student feedback shows that students had an overall positive and beneficial experience participating in this activity. Assessments and teacher journals showed areas of strength and weaknesses in student learning and on differences in teaching styles. They also helped support some feedback claims made by students. Areas of further research and improvement of the incorporation of this teaching method in the Basotho secondary science classroom are explored.