5 resultados para CWR hotspots of environment-adapted diversity

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Dominican Republic economic growth in the past twenty years has not yielded sufficient improvement in access to drinking water services, especially in rural areas where 1.5 million people do not have access to an improved water source (WHO, 2006). Worldwide, strategic development planning in the rural water sector has focused on participatory processes and the use of demand filters to ensure that service levels match community commitment to post-project operation and maintenance. However studies have concluded that an alarmingly high percentage of drinking water systems (20-50%) do not provide service at the design levels and/or fail altogether (up to 90%): BNWP (2009), Annis (2006), and Reents (2003). World Bank, USAID, NGOs, and private consultants have invested significant resources in an effort to determine what components make up an “enabling environment” for sustainable community management of rural water systems (RWS). Research has identified an array of critical factors, internal and external to the community, which affect long term sustainability of water services. Different frameworks have been proposed in order to better understand the linkages between individual factors and sustainability of service. This research proposes a Sustainability Analysis Tool to evaluate the sustainability of RWS, adapted from previous relevant work in the field to reflect the realities in the Dominican Republic. It can be used as a diagnostic tool for government entities and development organizations to characterize the needs of specific communities and identify weaknesses in existing training regimes or support mechanisms. The framework utilizes eight indicators in three categories (Organization/Management, Financial Administration, and Technical Service). Nineteen independent variables are measured resulting in a score of sustainability likely (SL), possible (SP), or unlikely (SU) for each of the eight indicators. Thresholds are based upon benchmarks from the DR and around the world, primary data collected during the research, and the author’s 32 months of field experience. A final sustainability score is calculated using weighting factors for each indicator, derived from Lockwood (2003). The framework was tested using a statistically representative geographically stratified random sample of 61 water systems built in the DR by initiatives of the National Institute of Potable Water (INAPA) and Peace Corps. The results concluded that 23% of sample systems are likely to be sustainable in the long term, 59% are possibly sustainable, and for 18% it is unlikely that the community will be able to overcome any significant challenge. Communities that were scored as unlikely sustainable perform poorly in participation, financial durability, and governance while the highest scores were for system function and repair service. The Sustainability Analysis Tool results are verified by INAPA and PC reports, evaluations, and database information, as well as, field observations and primary data collected during the surveys. Future research will analyze the nature and magnitude of relationships between key factors and the sustainability score defined by the tool. Factors include: gender participation, legal status of water committees, plumber/operator remuneration, demand responsiveness, post construction support methodologies, and project design criteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethanol from lignocellulosic feedstocks is not currently competitive with corn-based ethanol in terms of yields and commercial feasibility. Through optimization of the pretreatment and fermentation steps this could change. The overall goal of this study was to evaluate, characterize, and optimize ethanol production from lignocellulosic feedstocks by the yeasts Saccharomyces cerevisiae (strain Ethanol Red, ER) and Pichia stipitis CBS 6054. Through a series of fermentations and growth studies, P. stipitis CBS 6054 and S. cerevisiae (ER) were evaluated on their ability to produce ethanol from both single substrate (xylose and glucose) and mixed substrate (five sugars present in hemicellulose) fermentations. The yeasts were also evaluated on their ability to produce ethanol from dilute acid pretreated hydrolysate and enzymatic hydrolysate. Hardwood (aspen), softwood (balsam), and herbaceous (switchgrass) hydrolysates were also tested to determine the effect of the source of the feedstock. P. stipitis produced ethanol from 66-98% of the theoretical yield throughout the fermentation studies completed over the course of this work. S. cerevisiae (ER) was determined to not be ideal for dilute acid pretreated lignocellulose because it was not able to utilize all the sugars found in hemicellulose. S. cerevisiae (ER) was instead used to optimize enzymatic pretreated lignocellulose that contained only glucose monomers. It was able to produce ethanol from enzymatically pretreated hydrolysate but the sugar level was so low (>3 g/L) that it would not be commercially feasible. Two lignocellulosic degradation products, furfural and acetic acid, were evaluated for whether or not they had an inhibitory effect on biomass production, substrate utilization, and ethanol production by P. stipitis and S. cerevisiae (ER). It was determined that inhibition is directly related to the concentration of the inhibitor and the organism. The final phase for this thesis focused on adapting P. stipitis CBS 6054 to toxic compounds present in dilute acid pretreated hydrolysate through directed evolution. Cultures were transferred to increasing concentrations of dilute acid pretreated hydrolysate in the fermentation media. The adapted strains’ fermentation capabilities were tested against the unadapted parent strain at each hydrolysate concentration. The fermentation capabilities of the adapted strain were significantly improved over the unadapted parentstrain. On media containing 60% hydrolysate the adapted strain yielded 0.30 g_ethanol/g_sugar ± 0.033 (g/g) and the unadapted parent strain yielded 0.11 g/g ±0.028. The culture has been successfully adapted to growth on media containing 65%, 70%, 75%, and 80% hydrolysate but with below optimal ethanol yields (0.14-0.19 g/g). Cell recycle could be a viable option for improving ethanol yields in these cases. A study was conducted to determine the optimal media for production of ethanol from xylose and mixed substrate fermentations by P. stipitis. Growth, substrate utilization, and ethanol production were the three factors used to evaluate the media. The three media tested were Yeast Peptone (YP), Yeast Nitrogen Base (YNB), and Corn Steep Liquor (CSL). The ethanol yields (g/g) for each medium are as follows: YP - 0.40-0.42, YNB -0.28-.030, and CSL - 0.44-.051. The results show that media containing CSL result in slightly higher ethanol yields then other fermentation media. P. stipitis was successfully adapted to dilute acid pretreated aspen hydrolysate in increasing concentrations in order to produce higher ethanol yields compared to the unadapted parent strain. S. cerevisiae (ER) produced ethanol from enzymatic pretreated cellulose containing low concentrations of glucose (1-3g/L). These results show that fermentations of lignocellulosic feedstocks can be optimized based on the substrate and organism for increased ethanol yields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies are suggesting that hurricane hazard patterns (e.g. intensity and frequency) may change as a consequence of the changing global climate. As hurricane patterns change, it can be expected that hurricane damage risks and costs may change as a result. This indicates the necessity to develop hurricane risk assessment models that are capable of accounting for changing hurricane hazard patterns, and develop hurricane mitigation and climatic adaptation strategies. This thesis proposes a comprehensive hurricane risk assessment and mitigation strategies that account for a changing global climate and that has the ability of being adapted to various types of infrastructure including residential buildings and power distribution poles. The framework includes hurricane wind field models, hurricane surge height models and hurricane vulnerability models to estimate damage risks due to hurricane wind speed, hurricane frequency, and hurricane-induced storm surge and accounts for the timedependant properties of these parameters as a result of climate change. The research then implements median insured house values, discount rates, housing inventory, etc. to estimate hurricane damage costs to residential construction. The framework was also adapted to timber distribution poles to assess the impacts climate change may have on timber distribution pole failure. This research finds that climate change may have a significant impact on the hurricane damage risks and damage costs of residential construction and timber distribution poles. In an effort to reduce damage costs, this research develops mitigation/adaptation strategies for residential construction and timber distribution poles. The costeffectiveness of these adaptation/mitigation strategies are evaluated through the use of a Life-Cycle Cost (LCC) analysis. In addition, a scenario-based analysis of mitigation strategies for timber distribution poles is included. For both residential construction and timber distribution poles, adaptation/mitigation measures were found to reduce damage costs. Finally, the research develops the Coastal Community Social Vulnerability Index (CCSVI) to include the social vulnerability of a region to hurricane hazards within this hurricane risk assessment. This index quantifies the social vulnerability of a region, by combining various social characteristics of a region with time-dependant parameters of hurricanes (i.e. hurricane wind and hurricane-induced storm surge). Climate change was found to have an impact on the CCSVI (i.e. climate change may have an impact on the social vulnerability of hurricane-prone regions).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex human diseases are a major challenge for biological research. The goal of my research is to develop effective methods for biostatistics in order to create more opportunities for the prevention and cure of human diseases. This dissertation proposes statistical technologies that have the ability of being adapted to sequencing data in family-based designs, and that account for joint effects as well as gene-gene and gene-environment interactions in the GWA studies. The framework includes statistical methods for rare and common variant association studies. Although next-generation DNA sequencing technologies have made rare variant association studies feasible, the development of powerful statistical methods for rare variant association studies is still underway. Chapter 2 demonstrates two adaptive weighting methods for rare variant association studies based on family data for quantitative traits. The results show that both proposed methods are robust to population stratification, robust to the direction and magnitude of the effects of causal variants, and more powerful than the methods using weights suggested by Madsen and Browning [2009]. In Chapter 3, I extended the previously proposed test for Testing the effect of an Optimally Weighted combination of variants (TOW) [Sha et al., 2012] for unrelated individuals to TOW &ndash F, TOW for Family &ndash based design. Simulation results show that TOW &ndash F can control for population stratification in wide range of population structures including spatially structured populations, is robust to the directions of effect of causal variants, and is relatively robust to percentage of neutral variants. In GWA studies, this dissertation consists of a two &ndash locus joint effect analysis and a two-stage approach accounting for gene &ndash gene and gene &ndash environment interaction. Chapter 4 proposes a novel two &ndash stage approach, which is promising to identify joint effects, especially for monotonic models. The proposed approach outperforms a single &ndash marker method and a regular two &ndash stage analysis based on the two &ndash locus genotypic test. In Chapter 5, I proposed a gene &ndash based two &ndash stage approach to identify gene &ndash gene and gene &ndash environment interactions in GWA studies which can include rare variants. The two &ndash stage approach is applied to the GAW 17 dataset to identify the interaction between KDR gene and smoking status.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Utilizing remote sensing methods to assess landscape-scale ecological change are rapidly becoming a dominant force in the natural sciences. Powerful and robust non-parametric statistical methods are also actively being developed to compliment the unique characteristics of remotely sensed data. The focus of this research is to utilize these powerful, robust remote sensing and statistical approaches to shed light on woody plant encroachment into native grasslands--a troubling ecological phenomenon occurring throughout the world. Specifically, this research investigates western juniper encroachment within the sage-steppe ecosystem of the western USA. Western juniper trees are native to the intermountain west and are ecologically important by means of providing structural diversity and habitat for many species. However, after nearly 150 years of post-European settlement changes to this threatened ecosystem, natural ecological processes such as fire regimes no longer limit the range of western juniper to rocky refugia and other areas protected from short fire return intervals that are historically common to the region. Consequently, sage-steppe communities with high juniper densities exhibit negative impacts, such as reduced structural diversity, degraded wildlife habitat and ultimately the loss of biodiversity. Much of today's sage-steppe ecosystem is transitioning to juniper woodlands. Additionally, the majority of western juniper woodlands have not reached their full potential in both range and density. The first section of this research investigates the biophysical drivers responsible for juniper expansion patterns observed in the sage-steppe ecosystem. The second section is a comprehensive accuracy assessment of classification methods used to identify juniper tree cover from multispectral 1 m spatial resolution aerial imagery.