3 resultados para COMPARING COURNOT

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mount Etna, Italy, is one of the most active volcanoes in the world, and is also regarded as one of the strongest volcanic sources of sulfur dioxide (SO2) emissions to the atmosphere. Since October 2004, an automated ultraviolet (UV) spectrometer network (FLAME) has provided ground-based SO2 measurements with high temporal resolution, providing an opportunity to validate satellite SO2 measurements at Etna. The Ozone Monitoring Instrument (OMI) on the NASA Aura satellite, which makes global daily measurements of trace gases in the atmosphere, was used to compare SO2 amount released by the volcano during paroxysmal lava-fountaining events from 2004 to present. We present the first comparison between SO2 emission rates and SO2 burdens obtained by the OMI transect technique and OMI Normalized Cloud-Mass (NCM) technique and the ground-based FLAME Mini-DOAS measurements. In spite of a good data set from the FLAME network, finding coincident OMI and FLAME measurements proved challenging and only one paroxysmal event provided a good validation for OMI. Another goal of this work was to assess the efficacy of the FLAME network in capturing paroxysmal SO2 emissions from Etna, given that the FLAME network is only operational during daylight hours and some paroxysms occur at night. OMI measurements are advantageous since SO2 emissions from nighttime paroxysms can often be quantified on the following day, providing improved constraints on Etna’s SO2 budget.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the canopy cover of an urban environment leads to better estimates of carbon storage and more informed management decisions by urban foresters. The most commonly used method for assessing urban forest cover type extent is ground surveys, which can be both timeconsuming and expensive. The analysis of aerial photos is an alternative method that is faster, cheaper, and can cover a larger number of sites, but may be less accurate. The objectives of this paper were (1) to compare three methods of cover type assessment for Los Angeles, CA: handdelineation of aerial photos in ArcMap, supervised classification of aerial photos in ERDAS Imagine, and ground-collected data using the Urban Forest Effects (UFORE) model protocol; (2) to determine how well remote sensing methods estimate carbon storage as predicted by the UFORE model; and (3) to explore the influence of tree diameter and tree density on carbon storage estimates. Four major cover types (bare ground, fine vegetation, coarse vegetation, and impervious surfaces) were determined from 348 plots (0.039 ha each) randomly stratified according to land-use. Hand-delineation was better than supervised classification at predicting ground-based measurements of cover type and UFORE model-predicted carbon storage. Most error in supervised classification resulted from shadow, which was interpreted as unknown cover type. Neither tree diameter or tree density per plot significantly affected the relationship between carbon storage and canopy cover. The efficiency of remote sensing rather than in situ data collection allows urban forest managers the ability to quickly assess a city and plan accordingly while also preserving their often-limited budget.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis represents the overview of hydrographic surveying and different types of modern and traditional surveying equipment, and data acquisition using the traditional single beam sonar system and a modern fully autonomous underwater vehicle, IVER3. During the thesis, the data sets were collected using the vehicles of the Great Lake Research Center at Michigan Technological University. This thesis also presents how to process and edit the bathymetric data on SonarWiz5. Moreover, the three dimensional models were created after importing the data sets in the same coordinate system. In these interpolated surfaces, the details and excavations can be easily seen on the surface models. In this study, the profiles are plotted on the surface models to compare the sensors and details on the seabed. It is shown that single beam sonar might miss some details, such as pipeline and quick elevation changes on the seabed when we compare to the side scan sonar of IVER3 because the single side scan sonar can acquire better resolution. However, sometimes using single beam sonar can save your project time and money because the single beam sonar is cheaper than side scan sonars and the processing might be easier than the side scan data.