3 resultados para CLOUD CORES

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Montane cloud forests are home to great biodiversity. However, non-sustainable anthropogenic activities have led to the loss of forest cover in southern Mexico. Increasing conservation, restoration and sustainable use of forest resources prevents the loss of cloud forests. In this study, success of forest restoration was evaluated in a degraded forest of Highlands Chiapas. The goal of this study was to assess the structure and composition of native tree species. We evaluated vegetation composition at three sites that had undergone enrichment plantings. Floristic composition and structure of the herbaceous, seedling, sapling, and overstory layers were measured. A total of sixty-six native tree species were recorded. Enrichment planting was found to have increased tree diversity. Moreover, 54% of the planted species were found in the understory, indicating that they were successfully recruiting. In conclusion, enrichment planting can aid in the conservation of forest cover in degraded areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Satellite measurement validations, climate models, atmospheric radiative transfer models and cloud models, all depend on accurate measurements of cloud particle size distributions, number densities, spatial distributions, and other parameters relevant to cloud microphysical processes. And many airborne instruments designed to measure size distributions and concentrations of cloud particles have large uncertainties in measuring number densities and size distributions of small ice crystals. HOLODEC (Holographic Detector for Clouds) is a new instrument that does not have many of these uncertainties and makes possible measurements that other probes have never made. The advantages of HOLODEC are inherent to the holographic method. In this dissertation, I describe HOLODEC, its in-situ measurements of cloud particles, and the results of its test flights. I present a hologram reconstruction algorithm that has a sample spacing that does not vary with reconstruction distance. This reconstruction algorithm accurately reconstructs the field to all distances inside a typical holographic measurement volume as proven by comparison with analytical solutions to the Huygens-Fresnel diffraction integral. It is fast to compute, and has diffraction limited resolution. Further, described herein is an algorithm that can find the position along the optical axis of small particles as well as large complex-shaped particles. I explain an implementation of these algorithms that is an efficient, robust, automated program that allows us to process holograms on a computer cluster in a reasonable time. I show size distributions and number densities of cloud particles, and show that they are within the uncertainty of independent measurements made with another measurement method. The feasibility of another cloud particle instrument that has advantages over new standard instruments is proven. These advantages include a unique ability to detect shattered particles using three-dimensional positions, and a sample volume size that does not vary with particle size or airspeed. It also is able to yield two-dimensional particle profiles using the same measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding clouds and their role in climate depends in part on our ability to understand how individual cloud particles respond to environmental conditions. Keeping this objective in mind, a quadrupole trap with thermodynamic control has been designed and constructed in order to create an environment conducive to studying clouds in the laboratory. The quadrupole trap allows a single cloud particle to be suspended for long times. The temperature and water vapor saturation ratio near the trapped particle is controlled by the flow of saturated air through a tube with a discontinuous wall temperature. The design has the unique aspect that the quadrupole electrodes are submerged in heat transfer fluid, completely isolated from the cylindrical levitation volume. This fluid is used in the thermodynamic system to cool the chamber to realistic cloud temperatures, and a heated section of the tube provides for the temperature discontinuity. Thus far, charged water droplets, ranging from about 30-70 microns in diameter have been levitated. In addition, the thermodynamic system has been shown to create the necessary thermal conditions that will create supersaturated conditions in subsequent experiments. These advances will help lead to the next generation of ice nucleation experiments, moving from hemispherical droplets on a substrate to a spherical droplet that is not in contact with any surface.