5 resultados para CLIMATES
em Digital Commons - Michigan Tech
Resumo:
Experimental warming provides a method to determine how an ecosystem will respond to increased temperatures. Northern peatland ecosystems, sensitive to changing climates, provide an excellent setting for experimental warming. Storing great quantities of carbon, northern peatlands play a critical role in regulating global temperatures. Two of the most common methods of experimental warming include open top chambers (OTCs) and infrared (IR) lamps. These warming systems have been used in many ecosystems throughout the world, yet their efficacy to create a warmer environment is variable and has not been widely studied. To date, there has not been a direct, experimentally controlled comparison of OTCs and IR lamps. As a result, a factorial study was implemented to compare the warming efficacy of OTCs and IR lamps and to examine the resulting carbon dioxide (CO2) and methane (CH4) flux rates in a Lake Superior peatland. IR lamps warmed the ecosystem on average by 1-2 #°C, with the majority of warming occurring during nighttime hours. OTC's did not provide any long-term warming above control plots, which is contrary to similar OTC studies at high latitudes. By investigating diurnal heating patterns and micrometeorological variables, we were able to conclude that OTCs were not achieving strong daytime heating peaks and were often cooler than control plots during nighttime hours. Temperate day-length, cloudy and humid conditions, and latent heat loss were factors that inhibited OTC warming. There were no changes in CO2 flux between warming treatments in lawn plots. Gross ecosystem production was significantly greater in IR lamp-hummock plots, while ecosystem respiration was not affected. CH4 flux was not significantly affected by warming treatment. Minimal daytime heating differences, high ambient temperatures, decay resistant substrate, as well as other factors suppressed significant gas flux responses from warming treatments.
Resumo:
The objective of this doctoral research is to investigate the internal frost damage due to crystallization pore pressure in porous cement-based materials by developing computational and experimental characterization tools. As an essential component of the U.S. infrastructure system, the durability of concrete has significant impact on maintenance costs. In cold climates, freeze-thaw damage is a major issue affecting the durability of concrete. The deleterious effects of the freeze-thaw cycle depend on the microscale characteristics of concrete such as the pore sizes and the pore distribution, as well as the environmental conditions. Recent theories attribute internal frost damage of concrete is caused by crystallization pore pressure in the cold environment. The pore structures have significant impact on freeze-thaw durability of cement/concrete samples. The scanning electron microscope (SEM) and transmission X-ray microscopy (TXM) techniques were applied to characterize freeze-thaw damage within pore structure. In the microscale pore system, the crystallization pressures at sub-cooling temperatures were calculated using interface energy balance with thermodynamic analysis. The multi-phase Extended Finite Element Modeling (XFEM) and bilinear Cohesive Zone Modeling (CZM) were developed to simulate the internal frost damage of heterogeneous cement-based material samples. The fracture simulation with these two techniques were validated by comparing the predicted fracture behavior with the captured damage from compact tension (CT) and single-edge notched beam (SEB) bending tests. The study applied the developed computational tools to simulate the internal frost damage caused by ice crystallization with the two dimensional (2-D) SEM and three dimensional (3-D) reconstructed SEM and TXM digital samples. The pore pressure calculated from thermodynamic analysis was input for model simulation. The 2-D and 3-D bilinear CZM predicted the crack initiation and propagation within cement paste microstructure. The favorably predicted crack paths in concrete/cement samples indicate the developed bilinear CZM techniques have the ability to capture crack nucleation and propagation in cement-based material samples with multiphase and associated interface. By comparing the computational prediction with the actual damaged samples, it also indicates that the ice crystallization pressure is the main mechanism for the internal frost damage in cementitious materials.
Resumo:
One of two active volcanoes in the western branch of the East African Rift, Nyamuragira (1.408ºS, 29.20ºE; 3058 m) is located in the D.R. Congo. Nyamuragira emits large amounts of SO2 (up to ~1 Mt/day) and erupts low-silica, alkalic lavas, which achieve flow rates of up to ~20 km/hr. The source of the large SO2 emissions and pre-eruptive magma conditions were unknown prior to this study, and 1994-2010 lava volumes were only recently mapped via satellite imagery, mainly due to the region’s political instability. In this study, new olivine-hosted melt inclusion volatile (H2O, CO2, S, Cl, F) and major element data from five historic Nyamuragira eruptions (1912, 1938, 1948, 1986, 2006) are presented. Melt compositions derived from the 1986 and 2006 tephra samples best represent pre-eruptive volatile compositions because these samples contain naturally glassy inclusions that underwent less post-entrapment modification than crystallized inclusions. The total amount of SO2 released from the 1986 (0.04 Mt) and 2006 (0.06 Mt) eruptions are derived using the petrologic method, whereby S contents in melt inclusions are scaled to erupted lava volumes. These amounts are significantly less than satellite-based SO2 emissions for the same eruptions (1986 = ~1 Mt; 2006 = ~2 Mt). Potential explanations for this observation are: 1) accumulation of a vapor phase within the magmatic system that is only released during eruptions, and/or 2) syn-eruptive gas release from unerupted magma. Post-1994 Nyamuragira lava volumes were not available at the beginning of this study. These flows (along with others since 1967) are mapped with Landsat MSS, TM, and ETM+, Hyperion, and ALI satellite data and combined with published flow thicknesses to derive volumes. Satellite remote sensing data was also used to evaluate Nyamuragira SO2 emissions. These results show that the most recent Nyamuragira eruptions injected SO2 into the atmosphere between 15 km (2006 eruption) and 5 km (2010 eruption). This suggests that past effusive basaltic eruptions (e.g., Laki 1783) are capable of similar plume heights that reached the upper troposphere or tropopause, allowing SO2 and resultant aerosols to remain longer in the atmosphere, travel farther around the globe, and affect global climates.
Resumo:
Water resource depletion and sanitation are growing problems around the world. A solution to both of these problems is the use of composting latrines, as it requires no water and has been recommended by the World Health Organization as an improved sanitation technology. However, little analysis has been done on the decomposition process occurring inside the latrine, including what temperatures are reached and what variables most affect the composting process. Having better knowledge of how outside variables affect composting latrines can aid development workers on the choice of implementing such technology, and to better educate the users on the appropriate methods of maintenance. This report presents a full, detailed construction manual and temperature data analysis of a double vault composting latrine. During the author’s two year Peace Corps service in rural Paraguay he was involved with building twenty one composting latrines, and took detailed temperature readings and visual observations of his personal latrine for ten months. The author also took limited temperature readings of fourteen community member’s latrines over a three month period. These data points were analyzed to find correlations between compost temperatures and several variables. The two main variables found to affect the compost temperatures were the seasonal trends of the outside temperatures, and the mixing and addition of moisture to the compost. Outside seasonal temperature changes were compared to those of the compost and a linear regression was performed resulting in a R2-value of 0.89. Mixing the compost and adding water, or a water/urine mixture, resulted in temperature increases of the compost 100% of the time, with seasonal temperatures determining the rate and duration of the temperature increases. The temperature readings were also used to find events when certain temperatures were held for sufficient amounts of time to reach total pathogen destruction in the compost. Four different events were recorded when a temperature of 122°F (50°C) was held for at least 24 hours, ensuring total pathogen destruction in that area of the compost. One event of 114.8°F (46°C) held for one week was also recorded, again ensuring total pathogen destruction. Through the analysis of the temperature data, however, it was found that the compost only reached total pathogen destruction levels during ten percent of the data points. Because of this the storage time recommendation outlined by the World Health Organization should be complied with. The WHO recommends storing compost for 1.5-2 years in climates with ambient temperatures of 2-20°C (35-68°F), and for at least 1 year with ambient temperatures of 20-35°C (68-95°F). If these storage durations are obtainable the use of the double vault composting latrine is an economical and achievable solution to sanitation while conserving water resources.
Resumo:
Smallholders in eastern Paraguay plant small stands of Eucalyptus grandis W. Hill ex Maiden intended for sale on the local market. Smallholders have been encouraged to plant E. grandis by local forestry extension agents who offer both forestry education and incentive programs. Smallholders who practice recommended forestry techniques geared towards growing large diameter trees of good form are financially rewarded by the local markets which desire saw log quality trees. The question was posed, are smallholders engaging in recommended silvicultural practices and producing reasonable volume yields? It was hypothesized that smallholders, having received forestry education and having financial incentives from the local market, would engage in silvicultural practices resulting in trees of good form and volume yields that were reasonable for the local climate and soil characteristics. Yield volume results from this study support this hypothesis. Mean volume yield was estimated at 70 cubic meters per hectare at age four and 225 cubic meters per hectare at age eight. These volume yields compare favorably to volume yields from other studies of E. grandis grown in similar climates, with similar stocking levels and site qualities.