2 resultados para CHELATED RUTHENIUM(II) COMPLEX

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new series of chiral ferrosalen ligands was designed and synthesized. The special feature of the ferrosalen ligands is that the chirality originated from the planar chiral ferrocenyl structure. For most known salen ligands, chirality comes from central and axial chiral centers. The key building block for the construction of these ferrosalen ligands was synthesized stereoselectively by a chiral auxiliary approach. This approach does not consume any chiral material, and does not require chiral HPLC resolution. Using this method, nine ligands were prepared using ferrocene as the starting material. In addition, the steric hindrance was modulated by changing the cyclopentadienyl group to the more bulky pentamethylcyclopentadienyl- and pentaphenylcyclopentadienyl- groups. The structure of these ligands was established by 1H and 13C NMR. The structure of a ferrosalen-Cu (II) complex was determined by single crystal X-ray diffraction analysis. All the chiral ferrosalen ligands were tested in catalytic asymmetric reactions including enantioselective carbonyl-ene reaction, enantioselective Strecker-type reaction and enantioselective silylcyanation. For the carbonyl-ene reaction, up to 99% yield and 29% enantiomeric excess (ee) were obtained using ligand-Co (III) as the catalysts; For the Strecker-type reaction, a maximum of 20% ee was obtained using ligand-AlCl as the catalyst; For the silylcyanation reaction, up to 99% yield and 26% ee were obtained using ligand-AlCl as the catalyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of the research presented in this work is to provide some important insights about computational modeling of open-shell species. Such projects are: the investigation of the size-extensivity error in Equation-of-Motion Coupled Cluster methods, the analysis of the Long-Range corrected scheme in predicting UV-Vis spectra of Cu(II) complexes with the 4-imidazole acetate and its ethylated derivative, and the exploration of the importance of choosing a proper basis set for the description of systems such as the lithium monoxide anion. The most significant findings of this research are: (i) The contribution of the left operator to the size-extensivity error of the CR-EOMCC(2,3) approach, (ii) The cause of d-d shifts when varying the range-separation parameter and the amount of the exact exchange arising from the imbalanced treatment of localized vs. delocalized orbitals via the "tuned" CAM-B3LYP* functional, (iii) The proper acidity trend of the first-row hydrides and their lithiated analogs that may be reversed if the basis sets are not correctly selected.