7 resultados para Brownian Dynamics Simulation

em Digital Commons - Michigan Tech


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Early water resources modeling efforts were aimed mostly at representing hydrologic processes, but the need for interdisciplinary studies has led to increasing complexity and integration of environmental, social, and economic functions. The gradual shift from merely employing engineering-based simulation models to applying more holistic frameworks is an indicator of promising changes in the traditional paradigm for the application of water resources models, supporting more sustainable management decisions. This dissertation contributes to application of a quantitative-qualitative framework for sustainable water resources management using system dynamics simulation, as well as environmental systems analysis techniques to provide insights for water quality management in the Great Lakes basin. The traditional linear thinking paradigm lacks the mental and organizational framework for sustainable development trajectories, and may lead to quick-fix solutions that fail to address key drivers of water resources problems. To facilitate holistic analysis of water resources systems, systems thinking seeks to understand interactions among the subsystems. System dynamics provides a suitable framework for operationalizing systems thinking and its application to water resources problems by offering useful qualitative tools such as causal loop diagrams (CLD), stock-and-flow diagrams (SFD), and system archetypes. The approach provides a high-level quantitative-qualitative modeling framework for "big-picture" understanding of water resources systems, stakeholder participation, policy analysis, and strategic decision making. While quantitative modeling using extensive computer simulations and optimization is still very important and needed for policy screening, qualitative system dynamics models can improve understanding of general trends and the root causes of problems, and thus promote sustainable water resources decision making. Within the system dynamics framework, a growth and underinvestment (G&U) system archetype governing Lake Allegan's eutrophication problem was hypothesized to explain the system's problematic behavior and identify policy leverage points for mitigation. A system dynamics simulation model was developed to characterize the lake's recovery from its hypereutrophic state and assess a number of proposed total maximum daily load (TMDL) reduction policies, including phosphorus load reductions from point sources (PS) and non-point sources (NPS). It was shown that, for a TMDL plan to be effective, it should be considered a component of a continuous sustainability process, which considers the functionality of dynamic feedback relationships between socio-economic growth, land use change, and environmental conditions. Furthermore, a high-level simulation-optimization framework was developed to guide watershed scale BMP implementation in the Kalamazoo watershed. Agricultural BMPs should be given priority in the watershed in order to facilitate cost-efficient attainment of the Lake Allegan's TP concentration target. However, without adequate support policies, agricultural BMP implementation may adversely affect the agricultural producers. Results from a case study of the Maumee River basin show that coordinated BMP implementation across upstream and downstream watersheds can significantly improve cost efficiency of TP load abatement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many types of materials at nanoscale are currently being used in everyday life. The production and use of such products based on engineered nanomaterials have raised concerns of the possible risks and hazards associated with these nanomaterials. In order to evaluate and gain a better understanding of their effects on living organisms, we have performed first-principles quantum mechanical calculations and molecular dynamics simulations. Specifically, we will investigate the interaction of nanomaterials including semiconducting quantum dots and metallic nanoparticles with various biological molecules, such as dopamine, DNA nucleobases and lipid membranes. Firstly, interactions of semiconducting CdSe/CdS quantum dots (QDs) with the dopamine and the DNA nucleobase molecules are investigated using similar quantum mechanical approach to the one used for the metallic nanoparticles. A variety of interaction sites are explored. Our results show that small-sized Cd4Se4 and Cd4S4 QDs interact strongly with the DNA nucleobase if a DNA nucleobase has the amide or hydroxyl chemical group. These results indicate that these QDs are suitable for detecting subcellular structures, as also reported by experiments. The next two chapters describe a preparation required for the simulation of nanoparticles interacting with membranes leading to accurate structure models for the membranes. We develop a method for the molecular crystalline structure prediction of 1,2-Dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC), 1,2-Dimyristoyl-sn-glycero-3-phosphorylethanolamine (DMPE) and cyclic di-amino acid peptide using first-principles methods. Since an accurate determination of the structure of an organic crystal is usually an extremely difficult task due to availability of the large number of its conformers, we propose a new computational scheme by applying knowledge of symmetry, structural chemistry and chemical bonding to reduce the sampling size of the conformation space. The interaction of metal nanoparticles with cell membranes is finally carried out by molecular dynamics simulations, and the results are reported in the last chapter. A new force field is developed which accurately describes the interaction forces between the clusters representing small-sized metal nanoparticles and the lipid bilayer molecules. The permeation of nanoparticles into the cell membrane is analyzed together with the RMSD values of the membrane modeled by a lipid bilayer. The simulation results suggest that the AgNPs could cause the same amount of deformation as the AuNPs for the dysfunction of the membrane.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract The development of innovative carbon-based materials can be greatly facilitated by molecular modeling techniques. Although the Reax Force Field (ReaxFF) can be used to simulate the chemical behavior of carbon-based systems, the simulation settings required for accurate predictions have not been fully explored. Using the ReaxFF, molecular dynamics (MD) simulations are used to simulate the chemical behavior of pure carbon and hydrocarbon reactive gases that are involved in the formation of carbon structures such as graphite, buckyballs, amorphous carbon, and carbon nanotubes. It is determined that the maximum simulation time step that can be used in MD simulations with the ReaxFF is dependent on the simulated temperature and selected parameter set, as are the predicted reaction rates. It is also determined that different carbon-based reactive gases react at different rates, and that the predicted equilibrium structures are generally the same for the different ReaxFF parameter sets, except in the case of the predicted formation of large graphitic structures with the Chenoweth parameter set under specific conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Reynolds-Stress Turbulence Model has been incorporated with success into the KIVA code, a computational fluid dynamics hydrocode for three-dimensional simulation of fluid flow in engines. The newly implemented Reynolds-stress turbulence model greatly improves the robustness of KIVA, which in its original version has only eddy-viscosity turbulence models. Validation of the Reynolds-stress turbulence model is accomplished by conducting pipe-flow and channel-flow simulations, and comparing the computed results with experimental and direct numerical simulation data. Flows in engines of various geometry and operating conditions are calculated using the model, to study the complex flow fields as well as confirm the model’s validity. Results show that the Reynolds-stress turbulence model is able to resolve flow details such as swirl and recirculation bubbles. The model is proven to be an appropriate choice for engine simulations, with consistency and robustness, while requiring relatively low computational effort.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accuracy of simulating the aerodynamics and structural properties of the blades is crucial in the wind-turbine technology. Hence the models used to implement these features need to be very precise and their level of detailing needs to be high. With the variety of blade designs being developed the models should be versatile enough to adapt to the changes required by every design. We are going to implement a combination of numerical models which are associated with the structural and the aerodynamic part of the simulation using the computational power of a parallel HPC cluster. The structural part models the heterogeneous internal structure of the beam based on a novel implementation of the Generalized Timoshenko Beam Model Technique.. Using this technique the 3-D structure of the blade is reduced into a 1-D beam which is asymptotically equivalent. This reduces the computational cost of the model without compromising its accuracy. This structural model interacts with the Flow model which is a modified version of the Blade Element Momentum Theory. The modified version of the BEM accounts for the large deflections of the blade and also considers the pre-defined structure of the blade. The coning, sweeping of the blade, tilt of the nacelle and the twist of the sections along the blade length are all computed by the model which aren’t considered in the classical BEM theory. Each of these two models provides feedback to the other and the interactive computations lead to more accurate outputs. We successfully implemented the computational models to analyze and simulate the structural and aerodynamic aspects of the blades. The interactive nature of these models and their ability to recompute data using the feedback from each other makes this code more efficient than the commercial codes available. In this thesis we start off with the verification of these models by testing it on the well-known benchmark blade for the NREL-5MW Reference Wind Turbine, an alternative fixed-speed stall-controlled blade design proposed by Delft University, and a novel alternative design that we proposed for a variable-speed stall-controlled turbine, which offers the potential for more uniform power control and improved annual energy production.. To optimize the power output of the stall-controlled blade we modify the existing designs and study their behavior using the aforementioned aero elastic model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycarbonate (PC) is an important engineering thermoplastic that is currently produced in large industrial scale using bisphenol A and monomers such as phosgene. Since phosgene is highly toxic, a non-phosgene approach using diphenyl carbonate (DPC) as an alternative monomer, as developed by Asahi Corporation of Japan, is a significantly more environmentally friendly alternative. Other advantages include the use of CO2 instead of CO as raw material and the elimination of major waste water production. However, for the production of DPC to be economically viable, reactive-distillation units are needed to obtain the necessary yields by shifting the reaction-equilibrium to the desired products and separating the products at the point where the equilibrium reaction occurs. In the field of chemical reaction engineering, there are many reactions that are suffering from the low equilibrium constant. The main goal of this research is to determine the optimal process needed to shift the reactions by using appropriate control strategies of the reactive distillation system. An extensive dynamic mathematical model has been developed to help us investigate different control and processing strategies of the reactive distillation units to increase the production of DPC. The high-fidelity dynamic models include extensive thermodynamic and reaction-kinetics models while incorporating the necessary mass and energy balance of the various stages of the reactive distillation units. The study presented in this document shows the possibility of producing DPC via one reactive distillation instead of the conventional two-column, with a production rate of 16.75 tons/h corresponding to start reactants materials of 74.69 tons/h of Phenol and 35.75 tons/h of Dimethyl Carbonate. This represents a threefold increase over the projected production rate given in the literature based on a two-column configuration. In addition, the purity of the DPC produced could reach levels as high as 99.5% with the effective use of controls. These studies are based on simulation done using high-fidelity dynamic models.