6 resultados para Bromocresol purple

em Digital Commons - Michigan Tech


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitric oxide has the potential to greatly improve intravascular measurements by locally inhibiting thrombus formation and dilating blood vessels. pH, the partial pressure of oxygen, and the partial pressure of carbon dioxide are three arterial blood parameters that are of interest to clinicians in the intensive care unit that can benefit from an intravascular sensor. This work explores fabrication of absorbance and fluorescence based pH sensing chemistry, the sensing chemistries' compatibility with nitric oxide, and a controllable nitric oxide releasing polymer. The pH sensing chemistries utilized various substrates, dyes, and methods of immobilization. Absorbance sensing chemistries used sol-gels, fumed silica particles, mesoporous silicon oxide, bromocresol purple, phenol red, bromocresol green, physical entrapment, molecular interactions, and covalent linking. Covalently linking the dyes to fumed silica particles and mesoporous silicon oxide eliminated leaching in the absorbance sensing chemistries. The structures of the absorbance dyes investigated were similar and bromocresol green in a sol-gel was tested for compatibility with nitric oxide. Nitric oxide did not interfere with the use of bromocresol green in a pH sensor. Investigated fluorescence sensing chemistries utilized silica optical fibers, poly(allylamine) hydrogel, SNARF-1, molecular interactions, and covalent linking. SNARF-1 covalently linked to a modified poly(allylamine) hydrogel was tested in the presence of nitric oxide and showed no interference from the nitric oxide. Nitric oxide release was controlled through the modulation of a light source that cleaved the bond between the nitric oxide and a sulfur atom in the donor. The nitric oxide donor in this work is S-nitroso-N-acetyl-D-penicillamine which was covalently linked to a silicone rubber made from polydimethylsiloxane. It is shown that the surface flux of nitric oxide released from the polymer films can be increased and decreased by increasing and decreasing the output power of the LED light source. In summary, an optical pH sensing chemistry was developed that eliminated the chronic problem of leaching of the indicator dye and showed no reactivity to nitric oxide released, thereby facilitating the development of a functional, reliable intravascular sensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The patterning of photoactive purple membrane (PM) films onto electronic substrates to create a biologically based light detection device was investigated. This research is part of a larger collaborative effort to develop a miniaturized toxin detection platform. This platform will utilize PM films containing the photoactive protein bacteriorhodopsin to convert light energy to electrical energy. Following an effort to pattern PM films using focused ion beam machining, the photolithography based bacteriorhodopsin patterning technique (PBBPT) was developed. This technique utilizes conventional photolithography techniques to pattern oriented PM films onto flat substrates. After the basic patterning process was developed, studies were conducted that confirmed the photoelectric functionality of the PM films after patterning. Several process variables were studied and optimized in order to increase the pattern quality of the PM films. Optical microscopy, scanning electron microscopy, and interferometric microscopy were used to evaluate the PM films produced by the patterning technique. Patterned PM films with lateral dimensions of 15 μm have been demonstrated using this technique. Unlike other patterning techniques, the PBBPT uses standard photolithographic processes that make its integration with conventional semiconductor fabrication feasible. The final effort of this research involved integrating PM films patterned using the PBBPT with PMOS transistors. An indirect integration of PM films with PMOS transistors was successfully demonstrated. This indirect integration used the voltage produced by a patterned PM film under light exposure to modulate the gate of a PMOS transistor, activating the transistor. Following this success, a study investigating how this PM based light detection system responded to variations in light intensity supplied to the PM film. This work provides a successful proof of concept for a portion of the toxin detection platform currently under development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exotic emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), was first discovered in North America in southeastern Michigan, USA, and Windsor, Ontario, Canada in 2002. Significant ash (Fraxinus spp.) mortality has been caused in areas where this insect has become well established, and new infestations continue to be discovered in several states in the United States and in Canada. This beetle is difficult to detect when it invades new areas or occurs at low density. Girdled trap tree and ground surveys have been important tools for detecting emerald ash borer populations, and more recently, purple baited prism traps have been used in detection efforts. Girdled trap trees were found to be more effective than purple prism traps at detecting emerald ash borer as they acted as sinks for larvae in an area of known low density emerald ash borer infestation. The canopy condition of the trap trees was not predictive of whether they were infested or not, indicating that ground surveys may not be effective for detection in an area of low density emerald ash borer population. When landing rates of low density emerald ash borer populations were monitored on non-girdled ash trees, landing rates were higher on larger, open grown trees with canopies that contain a few dead branches. As a result of these studies, we suggest that the threshold for emerald ash borer detection using baited purple prism traps hung at the canopy base of trees is higher than for girdled trap trees. In addition, detection of developing populations of EAB may be possible by selectively placing sticky trapping surfaces on non-girdled trap trees that are the larger and more open grown trees at a site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As awareness of potential human and environmental impacts from toxins has increased, so has the development of innovative sensors. Bacteriorhodopsin (bR) is a light activated proton pump contained in the purple membrane (PM) of the bacteria Halobacterium salinarum. Bacteriorhodopsin is a robust protein which can function in both wet and dry states and can withstand extreme environmental conditions. A single electron transistor(SET) is a nano-scale device that exploits the quantum mechanical properties of electrons to switch on and off. SETs have tremendous potential in practical applications due to their size, ultra low power requirements, and electrometer-like sensitivity. The main goal of this research was to create a bionanohybrid device by integrating bR with a SET device. This was achieved by a multidisciplinary approach. The SET devices were created by a combination of sputtering, photolithography, and focused ion beam machining. The bionanomaterial bacteriorhodopsin was created through oxidative fermentation and a series of transmembrane purification processes. The bR was then integrated with the SET by electrophoretic deposition, creating a bionanohybrid device. The bionanohybrid device was then characterized using a semiconductor parametric analyzer. Characterization demonstrated that the bR modulated the operational characteristics of the SET when bR was activated with light within its absorbance spectrum. To effectively integrate bacteriorhodopsin with microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS), it is critical to know the electrical properties of the material and to understand how it will affect the functionality of the device. Tests were performed on dried films of bR to determine if there is a relationship between inductance, capacitance, and resistance (LCR) measurements and orientation, light-on/off, frequency, and time. The results indicated that the LCR measurements of the bR depended on the thickness and area of the film, but not on the orientation, as with other biological materials such as muscle. However, there was a transient LCR response for both oriented and unoriented bR which depended on light intensity. From the impedance measurements an empirical model was suggested for the bionanohybrid device. The empirical model is based on the dominant electrical characteristics of the bR which were the parallel capacitance and resistance. The empirical model suggests that it is possible to integrate bR with a SET without influencing its functional characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacteriorhodopsin (bR), an optoelectric protein found in Halobacterium salinarum, has the potential for use in protein hybrid sensing systems. Bacteriorhodopsin has no intrinsic sensing properties, however molecular and chemical tools permit production of bR protein hybrids with transducing and sensing properties. As a proof of concept, a maltose binding protein-bacteriorhodopsin ([MBP]-bR) hybrid was developed. It was proposed that the energy associated with target molecule binding, maltose, to the hybrid sensor protein would provide a means to directly modulate the electrical output from the MBP-bR bio-nanosensor platform. The bR protein hybrid is produced by linkage between bR (principal component of purified purple membrane [PM]) and MBP, which was produced by use of a plasmid expression vector system in Escherichia coli and purified utilizing an amylose affinity column. These proteins were chemically linked using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), which facilitates formation of an amide bond between a primary carboxylic acid and a primary amine. The presence of novel protein hybrids after chemical linkage was analyzed by SDSPAGE. Soluble proteins (MBP-only derivatives and unlinked MBP) were separated from insoluble proteins (PM derivatives and unlinked PM) using size exclusion chromatography. The putatively identified MBP-bR protein hybrid, in addition to unlinked bR, was collected. This sample was normalized for bR concentration to native PM and both were deposited onto indium tin oxide (ITO) coated glass slides by electrophoretic sedimentation. The photoresponse of both samples, activated using 100 Watt tungsten lamp at 10 cm distance, were equal at 175 mV. Testing of deposited PM with 1 mM sucrose or 1 mM maltose showed no change in the photoresponse of the xiv material, however addition of 1 mM maltose to the deposited MBP-bR linked hybrid material elicited a 57% decrease in photoresponse indicating a positive response for targeting of maltose. This chemically linked MBP-bR hybrid protein, with bacteriorhodopsin, as a photoresponsive transducing substrate, shows promise for creation of a universal sensing array by attachment of other pertinent sensing materials, in lieu of the maltose binding protein utilized. This strategy would allow significant reduction in sensor size, while increasing responsiveness and sensitivity at nano and picomolar levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hydrogen ion activity (pH) is a very important parameter in environment monitoring, biomedical research and other applications. Optical pH sensors have several advantages over traditional potentiometric pH measurement, such as high sensitivity, no need of constant calibration, easy for miniaturization and possibility for remote sensing. Several pH indicators has been successfully immobilized in three different solid porous materials to use as pH sensing probes. The fluorescent pH indicator fluorescein-5-isothiocyanate (FITC) was covalently bound onto the internal surface of porous silica (pore size ~10 nm) and retained its pH sensitivity. The excited state pK* a of FITC in porous silica (5.58) was slightly smaller than in solution (5.68) due to the free silanol groups (Si-OH) on the silica surface. The pH sensitive range for this probe is pH 4.5 - 7.0 with an error less than 0.1 pH units. The probe response was reproducible and stable for at least four month, stored in DI water, but exhibit a long equilibrium of up to 100 minutes. Sol-gel based pH sensors were developed with immobilization of two fluorescent pH indicators fluorescein-5-(and-6)-sulfonic acid, trisodium salt (FS) and 8-hydroxypyrene- 1,3,6-trisulfonic acid (HPTS) through physical entrapment. Prior to immobilization, the indicators were ion-paired with a common surfactant hexadecyltrimethylammonium bromide (CTAB) in order to prevent leaching. The sol-gel films were synthesized through the hydrolysis of two different precursors, ethyltriethoxysilane (ETEOS) and 3- glycidoxypropyltrimethoxysilane (GPTMS) and deposited on a quartz slide through spin coating. The pK a of the indicators immobilized in sol-gel films was much smaller than in solutions due to silanol groups on the inner surface of the sol-gel films and ammonium groups from the surrounding surfactants. Unlike in solution, the apparent pK a of the indicators in sol-gel films increased with increasing ionic strength. The equilibrium time for these sensors was within 5 minutes (with film thickness of ~470 nm). Polyethylene glycol (PEG) hydrogel was of interest for optical pH sensor development because it is highly proton permeable, transparent and easy to synthesize. pH indicators can be immobilized in hydrogel through physical entrapment and copolymerization. FS and HPTS ion-pairs were physically entrapped in hydrogel matrix synthesized via free radical initiation. For covalent immobilization, three indicators, 6,8-dihydroxypyrene-1,3- disulfonic acid (DHPDS), 2,7-dihydroxynaphthalene-3,6-disulfonic acid (DHNDS) and cresol red were first reacted with methacrylic anhydride (MA) to form methacryloylanalogs for copolymerization. These hydrogels were synthesized in aqueous solution with a redox initiation system. The thickness of the hydrogel film is controlled as ~ 0.5 cm and the porosity can be adjusted with the percentage of polyethylene glycol in the precursor solutions. The pK a of the indicators immobilized in the hydrogel both physically and covalently were higher than in solution due to the medium effect. The sensors are stable and reproducible with a short equilibrium time (less than 4 minutes). In addition, the color change of cresol red immobilized hydrogel is vivid from yellow (acidic condition) to purple (basic condition). Due to covalently binding, cresol red was not leaching out from the hydrogel, making it a good candidate of reusable "pH paper".