3 resultados para Branch and bounds
em Digital Commons - Michigan Tech
Resumo:
Intraneural Ganglion Cysts expand within in a nerve, causing neurological deficits in afflicted patients. Modeling the propagation of these cysts, originating in the articular branch and then expanding radially outward, will help prove articular theory, and ultimately allow for more purposeful treatment of this condition. In Finite Element Analysis, traditional Lagrangian meshing methods fail to model the excessive deformation that occurs in the propagation of these cysts. This report explores the method of manual adaptive remeshing as a method to allow for the use of Lagrangian meshing, while circumventing the severe mesh distortions typical of using a Lagrangian mesh with a large deformation. Manual adaptive remeshing is the process of remeshing a deformed meshed part and then reapplying loads in order to achieve a larger deformation than a single mesh can achieve without excessive distortion. The methods of manual adaptive remeshing described in this Master’s Report are sufficient in modeling large deformations.
Resumo:
Linear programs, or LPs, are often used in optimization problems, such as improving manufacturing efficiency of maximizing the yield from limited resources. The most common method for solving LPs is the Simplex Method, which will yield a solution, if one exists, but over the real numbers. From a purely numerical standpoint, it will be an optimal solution, but quite often we desire an optimal integer solution. A linear program in which the variables are also constrained to be integers is called an integer linear program or ILP. It is the focus of this report to present a parallel algorithm for solving ILPs. We discuss a serial algorithm using a breadth-first branch-and-bound search to check the feasible solution space, and then extend it into a parallel algorithm using a client-server model. In the parallel mode, the search may not be truly breadth-first, depending on the solution time for each node in the solution tree. Our search takes advantage of pruning, often resulting in super-linear improvements in solution time. Finally, we present results from sample ILPs, describe a few modifications to enhance the algorithm and improve solution time, and offer suggestions for future work.
Resumo:
Four papers, written in collaboration with the author’s graduate school advisor, are presented. In the first paper, uniform and non-uniform Berry-Esseen (BE) bounds on the convergence to normality of a general class of nonlinear statistics are provided; novel applications to specific statistics, including the non-central Student’s, Pearson’s, and the non-central Hotelling’s, are also stated. In the second paper, a BE bound on the rate of convergence of the F-statistic used in testing hypotheses from a general linear model is given. The third paper considers the asymptotic relative efficiency (ARE) between the Pearson, Spearman, and Kendall correlation statistics; conditions sufficient to ensure that the Spearman and Kendall statistics are equally (asymptotically) efficient are provided, and several models are considered which illustrate the use of such conditions. Lastly, the fourth paper proves that, in the bivariate normal model, the ARE between any of these correlation statistics possesses certain monotonicity properties; quadratic lower and upper bounds on the ARE are stated as direct applications of such monotonicity patterns.