4 resultados para Biodiesel blends

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Active regeneration experiments were carried out on a production 2007 Cummins 8.9L ISL engine and associated DOC and CPF aftertreatment system. The effects of SME biodiesel blends were investigated in this study in order to determine the PM oxidation kinetics associated with active regeneration, and to determine the effect of biodiesel on them. The experimental data from this study will also be used to calibrate the MTU-1D CPF model. Accurately predicting the PM mass retained in the CPF and the oxidation characteristics will provide the basis for computation in the ECU that will minimize the fuel penalty associated with active regeneration. An active regeneration test procedure was developed based on previous experimentation at MTU. During each experiment, the PM mass in the CPF is determined by weighing the filter at various phases. In addition, DOC and CPF pressure drop, particle size distribution, gaseous emissions, temperature, and PM concentration data are collected and recorded throughout each experiment. The experiments covered a range of CPF inlet temperatures using ULSD, B10, and B20 blends of biodiesel. The majority of the tests were performed at CPF PM loading of 2.2 g/L with in-cylinder dosing, although 4.1 g/L and a post-turbo dosing injector were also used. The PM oxidation characteristics at different test conditions were studied in order to determine the effects of biodiesel on PM oxidation during active regeneration. A PM reaction rate calculation method was developed to determine the global activation energy and the corresponding pre-exponential factor for all test fuels. The changing sum of the total flow resistance of the wall, cake, and channels was also determined as part of the data analysis process in order to check on the integrity of the data and to correct input data to be consistent with the expected trends of the resistance based on the engine conditions used in the test procedure. It was determined that increasing the percent biodiesel content in the test fuel tends to increase the PM reaction rate and the regeneration efficiency of fuel dosing, i.e., at a constant CPF inlet temperature, B20 test fuel resulted in the highest PM reaction rate and regeneration efficiency of fuel dosing. Increasing the CPF inlet temperature also increases PM reaction rate and regeneration efficiency of fuel dosing. Performing active regeneration with B20 as opposed to ULSD allows for a lower CPF temperature to be used to reach the same level of regeneration efficiency, or it allows for a shorter regeneration time at a constant CPF temperature, resulting in decreased fuel consumption for the engine during active regeneration in either scenario.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) and 317 kW (425 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within an aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). The tests conducted with the engine rated at 365 hp used a 2007 DOC and CPF. The tests conducted with the engine rated at 425 hp used a 2010 DOC and 2007 CPF. Understanding the passive NO2 oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Modeling the passive oxidation of accumulated PM in the CPF will lead to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine, and when the engine is operated at a higher power rating. A test procedure developed by Hutton et al. [1, 2] was modified to improve the ability to model the experimental data and provide additional insight into passively oxidized PM in a partially regenerated CPF. A test procedure was developed to allow PM oxidation rates by NO2 to be determined from engine test cell data. An experimental matrix consisting of CPF inlet temperatures from 250 to 450 °C with varying NOX/PM from 25 to 583and NO2/PM ratios from 5 to 240 was used. SME biodiesel was volumetrically blended with ULSD in 10% (B10) and 20% (B20) portions. This blended fuel was then used to evaluate the effect of biodiesel on passive oxidation rates. Four tests were performed with B10 and four tests with B20. Gathering data to determine the effect of fuel type (ULSD and biodiesel blends) on PM oxidation is the primary goal. The engine used for this testing was then configured to a higher power rating and one of the tests planned was performed. Additional testing is scheduled to take place with ULSD fuel to determine the affect the engine rating has on the PM oxidation. The experimental reaction rates during passive oxidation varied based upon the average CPF temperature, NO2 concentrations, and the NOX/PM ratios for each engine rating and with all fuels. The data analysis requires a high fidelity model that includes NO2 and thermal oxidation mechanisms and back diffusion to determine the details of the PM oxidation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the introduction of the mid-level ethanol blend gasoline fuel for commercial sale, the compatibility of different off-road engines is needed. This report details the test study of using one mid-level ethanol fuel in a two stroke hand held gasoline engine used to power line trimmers. The study sponsored by E3 is to test the effectiveness of an aftermarket spark plug from E3 Spark Plug when using a mid-level ethanol blend gasoline. A 15% ethanol by volume (E15) is the test mid-level ethanol used and the 10% ethanol by volume (E10) was used as the baseline fuel. The testing comprises running the engine at different load points and throttle positions to evaluate the cylinder head temperature, exhaust temperature and engine speed. Raw gas emissions were also measured to determine the impact of the performance spark plug. The low calorific value of the E15 fuel decreased the speed of the engine along with reduction in the fuel consumption and exhaust gas temperature. The HC emissions for E15 fuel and E3 spark plug increased when compared to the base line in most of the cases and NO formation was dependent on the cylinder head temperature. The E3 spark plug had a tendency to increase the temperature of the cylinder head irrespective of fuel type while reducing engine speed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research, a modification to initiation aid ignition in bomb calorimetry that involves systemically blending levels of boron and potassium nitrate initiation aids with a bulk structural energetic elemental power blend is developed. A regression is used to estimate the nominal heat of reaction for the primary reaction. The technique is first applied to the synthesis of TiB2 as a validation study to see if close proximity to literature values can be achieved. The technique is then applied to two systems of interest, Al-Ti-B, and Al-Ti-B4C. In all three investigations, x-ray diffraction is used to characterize the product phases of the reactions to determine the extent and identity of the product phases and any by-products that may have formed as a result of adding the initiation aid. The experimental data indicates the technique approximates the heat of reaction value for the synthesis of TiB2 from Ti-B powder blends and the formation of TiB2 is supported by volume fraction analysis by x-ray diffraction. Application to the Al-Ti-B and Al-Ti-B4C blends show some correlation with variation of the initiation aid, with x-ray diffraction showing the formation of equilibrium products. However, these blends require further investigation to resolve more complex interactions and rule out extraneous variables.