4 resultados para Bio-inspired techniques
em Digital Commons - Michigan Tech
Resumo:
Understanding how a living cell behaves has become a very important topic in today’s research field. Hence, different sensors and testing devices have been designed to test the mechanical properties of these living cells. This thesis presents a method of micro-fabricating a bio-MEMS based force sensor which is used to measure the force response of living cells. Initially, the basic concepts of MEMS have been discussed and the different micro-fabrication techniques used to manufacture various MEMS devices have been described. There have been many MEMS based devices manufactured and employed for testing many nano-materials and bio-materials. Each of the MEMS based devices described in this thesis use a novel concept of testing the specimens. The different specimens tested are nano-tubes, nano-wires, thin film membranes and biological living cells. Hence, these different devices used for material testing and cell mechanics have been explained. The micro-fabrication techniques used to fabricate this force sensor has been described and the experiments preformed to successfully characterize each step in the fabrication have been explained. The fabrication of this force sensor is based on the facilities available at Michigan Technological University. There are some interesting and uncommon concepts in MEMS which have been observed during this fabrication. These concepts in MEMS which have been observed are shown in multiple SEM images.
Resumo:
The objective of this research is to develop sustainable wood-blend bioasphalt and characterize the atomic, molecular and bulk-scale behavior necessary to produce advanced asphalt paving mixtures. Bioasphalt was manufactured from Aspen, Basswood, Red Maple, Balsam, Maple, Pine, Beech and Magnolia wood via a 25 KWt fast-pyrolysis plant at 500 °C and refined into two distinct end forms - non-treated (5.54% moisture) and treated bioasphalt (1% moisture). Michigan petroleum-based asphalt, Performance Grade (PG) 58-28 was modified with 2, 5 and 10% of the bioasphalt by weight of base asphalt and characterized with the gas chromatography-mass spectroscopy (GC-MS), Fourier Transform Infra-red (FTIR) spectroscopy and the automated flocculation titrimetry techniques. The GC-MS method was used to characterize the Carbon-Hydrogen-Nitrogen (CHN) elemental ratio whiles the FTIR and the AFT were used to characterize the oxidative aging performance and the solubility parameters, respectively. For rheological characterization, the rotational viscosity, dynamic shear modulus and flexural bending methods are used in evaluating the low, intermediate and high temperature performance of the bio-modified asphalt materials. 54 5E3 (maximum of 3 million expected equivalent standard axle traffic loads) asphalt paving mixes were then prepared and characterized to investigate their laboratory permanent deformation, dynamic mix stiffness, moisture susceptibility, workability and constructability performance. From the research investigations, it was concluded that: 1) levo, 2, 6 dimethoxyphenol, 2 methoxy 4 vinylphenol, 2 methyl 1-2 cyclopentandione and 4-allyl-2, 6 dimetoxyphenol are the dominant chemical functional groups; 2) bioasphalt increases the viscosity and dynamic shear modulus of traditional asphalt binders; 3) Bio-modified petroleum asphalt can provide low-temperature cracking resistance benefits at -18 °C but is susceptible to cracking at -24 °C; 3) Carbonyl and sulphoxide oxidation in petroleum-based asphalt increases with increasing bioasphalt modifiers; 4) bioasphalt causes the asphaltene fractions in petroleum-based asphalt to precipitate out of the solvent maltene fractions; 5) there is no definite improvement or decline in the dynamic mix behavior of bio-modified mixes at low temperatures; 6) bio-modified asphalt mixes exhibit better rutting performance than traditional asphalt mixes; 7) bio-modified asphalt mixes have lower susceptibility to moisture damage; 8) more field compaction energy is needed to compact bio-modified mixes.
Resumo:
Micro-scale, two-phase flow is found in a variety of devices such as Lab-on-a-chip, bio-chips, micro-heat exchangers, and fuel cells. Knowledge of the fluid behavior near the dynamic gas-liquid interface is required for developing accurate predictive models. Light is distorted near a curved gas-liquid interface preventing accurate measurement of interfacial shape and internal liquid velocities. This research focused on the development of experimental methods designed to isolate and probe dynamic liquid films and measure velocity fields near a moving gas-liquid interface. A high-speed, reflectance, swept-field confocal (RSFC) imaging system was developed for imaging near curved surfaces. Experimental studies of dynamic gas-liquid interface of micro-scale, two-phase flow were conducted in three phases. Dynamic liquid film thicknesses of segmented, two-phase flow were measured using the RSFC and compared to a classic film thickness deposition model. Flow fields near a steadily moving meniscus were measured using RSFC and particle tracking velocimetry. The RSFC provided high speed imaging near the menisci without distortion caused the gas-liquid interface. Finally, interfacial morphology for internal two-phase flow and droplet evaporation were measured using interferograms produced by the RSFC imaging technique. Each technique can be used independently or simultaneously when.
Resumo:
Synthetic oligonucleotides and peptides have found wide applications in industry and academic research labs. There are ~60 peptide drugs on the market and over 500 under development. The global annual sale of peptide drugs in 2010 was estimated to be $13 billion. There are three oligonucleotide-based drugs on market; among them, the FDA newly approved Kynamro was predicted to have a $100 million annual sale. The annual sale of oligonucleotides to academic labs was estimated to be $700 million. Both bio-oligomers are mostly synthesized on automated synthesizers using solid phase synthesis technology, in which nucleoside or amino acid monomers are added sequentially until the desired full-length sequence is reached. The additions cannot be complete, which generates truncated undesired failure sequences. For almost all applications, these impurities must be removed. The most widely used method is HPLC. However, the method is slow, expensive, labor-intensive, not amendable for automation, difficult to scale up, and unsuitable for high throughput purification. It needs large capital investment, and consumes large volumes of harmful solvents. The purification costs are estimated to be more than 50% of total production costs. Other methods for bio-oligomer purification also have drawbacks, and are less favored than HPLC for most applications. To overcome the problems of known biopolymer purification technologies, we have developed two non-chromatographic purification methods. They are (1) catching failure sequences by polymerization, and (2) catching full-length sequences by polymerization. In the first method, a polymerizable group is attached to the failure sequences of the bio-oligomers during automated synthesis; purification is achieved by simply polymerizing the failure sequences into an insoluble gel and extracting full-length sequences. In the second method, a polymerizable group is attached to the full-length sequences, which are then incorporated into a polymer; impurities are removed by washing, and pure product is cleaved from polymer. These methods do not need chromatography, and all drawbacks of HPLC no longer exist. Using them, purification is achieved by simple manipulations such as shaking and extraction. Therefore, they are suitable for large scale purification of oligonucleotide and peptide drugs, and also ideal for high throughput purification, which currently has a high demand for research projects involving total gene synthesis. The dissertation will present the details about the development of the techniques. Chapter 1 will make an introduction to oligodeoxynucleotides (ODNs), their synthesis and purification. Chapter 2 will describe the detailed studies of using the catching failure sequences by polymerization method to purify ODNs. Chapter 3 will describe the further optimization of the catching failure sequences by polymerization ODN purification technology to the level of practical use. Chapter 4 will present using the catching full-length sequence by polymerization method for ODN purification using acid-cleavable linker. Chapter 5 will make an introduction to peptides, their synthesis and purification. Chapter 6 will describe the studies using the catching full-length sequence by polymerization method for peptide purification.