2 resultados para Bible and geology.

em Digital Commons - Michigan Tech


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vegetation communities affect carbon and nitrogen dynamics in the subsurface water of mineral wetlands through the quality of their litter, their uptake of nutrients, root exudation and their effects on redox potential. However, vegetation influence on subsurface nutrient dynamics is often overshadowed by the influences of hydrology, soils and geology on nutrient dynamics. The effects of vegetation communities on carbon and nitrogen dynamics are important to consider when managing land that may change vegetation type or quantity so that wetland ecosystem functions can be retained. This study was established to determine the magnitude of the influences and interaction of vegetation cover and hydrology, in the form of water table fluctuations, on carbon and nitrogen dynamics in a northern forested riparian wetland. Dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), nitrate (NO3-) and ammonium (NH4+) concentrations were collected from a piezometer network in four different vegetation communities and were found to show complex responses to vegetation cover and water table fluctuations. Dissolved organic carbon, DIC, NO3- and NH4+ concentrations were influenced by forest vegetation cover. Both NO3- and NH4+ were also influenced by water table fluctuations. However, for DOC and NH4+ concentrations there appeared to be more complex interactions than were measured by this study. The results of canonical correspondence analysis (CCA) and analysis of variance (ANOVA) did not correspond in relationship to the significance of vegetation communities. Dissolved inorganic carbon was influenced by an interaction between vegetation cover and water table fluctuations. More hydrological information is needed to make stronger conclusions about the relationship between vegetation and hydrology in controlling carbon and nitrogen dynamics in a forested riparian wetland.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this project was to investigate student learning in the areas of earth science and environmental responsibility using the subject of coal fires. Eastern Kentucky, where this study was performed, has several coal fires burning that affect the local air quality and may also affect the health of people living near them. This study was conducted during the regular education of 9th grade Earth Science classroom in Russell Independent Schools, located in Russell, Kentucky. Students conducted internet research, read current articles on the subject of coal fire emissions and effect on local ecology, and demonstrated what they learned through summative assessments. There were several aspects of coalmines and coal fires that students studied. Students were able to take this knowledge and information and use it as a learning tool to gain a better understanding of their own environment. Using the local history and geology of coalmines, along with the long tradition of mine production, was a very beneficial starting point, allowing students to learn about environmental impact, stewardship of their local environment, and methods of preserving and protecting the ecosystem.