11 resultados para Benefit-Cost Analysis
em Digital Commons - Michigan Tech
Resumo:
Power distribution systems are susceptible to extreme damage from natural hazards especially hurricanes. Hurricane winds can knock down distribution poles thereby causing damage to the system and power outages which can result in millions of dollars in lost revenue and restoration costs. Timber has been the dominant material used to support overhead lines in distribution systems. Recently however, utility companies have been searching for a cost-effective alternative to timber poles due to environmental concerns, durability, high cost of maintenance and need for improved aesthetics. Steel has emerged as a viable alternative to timber due to its advantages such as relatively lower maintenance cost, light weight, consistent performance, and invulnerability to wood-pecker attacks. Both timber and steel poles are prone to deterioration over time due to decay in the timber and corrosion of the steel. This research proposes a framework for conducting fragility analysis of timber and steel poles subjected to hurricane winds considering deterioration of the poles over time. Monte Carlo simulation was used to develop the fragility curves considering uncertainties in strength, geometry and wind loads. A framework for life-cycle cost analysis is also proposed to compare the steel and timber poles. The results show that steel poles can have superior reliability and lower life-cycle cost compared to timber poles, which makes them suitable substitutes.
Resumo:
This thesis attempts to find the least-cost strategy to reduce CO2 emission by replacing coal by other energy sources for electricity generation in the context of the proposed EPA’s regulation on CO2 emissions from existing coal-fired power plants. An ARIMA model is built to forecast coal consumption for electricity generation and its CO2 emissions in Michigan from 2016 to 2020. CO2 emission reduction costs are calculated under three emission reduction scenarios- reduction to 17%, 30% and 50% below the 2005 emission level. The impacts of Production Tax Credit (PTC) and the intermittency of renewable energy are also discussed. The results indicate that in most cases natural gas will be the best alternative to coal for electricity generation to realize CO2 reduction goals; if the PTC for wind power will continue after 2015, a natural gas and wind combination approach could be the best strategy based on the least-cost criterion.
Resumo:
The prevalence of Ventilated Improved Pit (VIP) latrines in Ghana suggests that the design must have a high user acceptance. The two key factors attributed to user acceptance of a VIP latrine over an alternative latrine design, such as the basic pit latrine, are its ability to remove foul odors and maintain low fly populations; both of which are a direct result of an adequate ventilation flow rate. Adequate ventilation for odorless conditions in a VIP latrine has been defined by the United Nations Development Program (UNDP) and the World Bank, as an air flow rate equivalent to 6 air changes per hour (6 ACH) of the superstructure’s air volume. Additionally, the UNDP determined that the three primary factors that affect ventilation are: 1) wind passing over the mouth of the vent pipe, 2) wind passing into the superstructure, and 3) solar radiation on to the vent pipe. Previous studies also indicate that vent pipes with larger diameters increase flow rates, and the application of carbonaceous materials to the pit sludge reduces odor and insect prevalence. Furthermore, proper design and construction is critical for the correct functioning of VIP latrines. Under-designing could cause problems with odor and insect control; over-designing would increase costs unnecessarily, thereby making it potentially unaffordable for benefactors to independently construct, repair or replace a VIP latrine. The present study evaluated the design of VIP latrines used by rural communities in the Upper West Region of Ghana with the focus of assessing adequate ventilation for odor removal and insect control. Thirty VIP latrines from six communities in the Upper West Region of Ghana were sampled. Each VIP latrine’s ventilation flow rate and micro-environment was measured using a hot-wire anemometer probe and portable weather station for a minimum of four hours. To capture any temporal or seasonal variations in ventilation, ten of the latrines were sampled monthly over the course of three months for a minimum of 12 hours. A latrine usage survey and a cost analysis were also conducted to further assess the VIP latrine as an appropriated technology for sustainable development in the Upper West Region. It was found that the average air flow rate over the entire sample set was 11.3 m3/hr. The minimum and maximum air flow rates were 0.0 m3/hr and 48.0 m3/hr respectively. Only 1 of the 30 VIP latrines (3%) was found to have an air flow rate greater than the UNDP-defined odorless condition of 6 ACH. Furthermore, 19 VIP latrines (63%) were found to have an average air flow rate of less than half the flow rate required to achieve 6 ACH. The dominant factors affecting ventilation flow rate were wind passing over the mouth of the vent pipe and air buoyancy forces, which were the effect of differences in temperature between the substructure and the ambient environment. Of 76 usable VIP latrines found in one community, 68.4% were in actual use. The cost of a VIP latrine was found to be equivalent to approximately 12% of the mean annual household income for Upper West Region inhabitants.
Resumo:
High flexural strength and stiffness can be achieved by forming a thin panel into a wave shape perpendicular to the bending direction. The use of corrugated shapes to gain flexural strength and stiffness is common in metal and reinforced plastic products. However, there is no commercial production of corrugated wood composite panels. This research focuses on the application of corrugated shapes to wood strand composite panels. Beam theory, classical plate theory and finite element models were used to analyze the bending behavior of corrugated panels. The most promising shallow corrugated panel configuration was identified based on structural performance and compatibility with construction practices. The corrugation profile selected has a wavelength equal to 8”, a channel depth equal to ¾”, a sidewall angle equal to 45 degrees and a panel thickness equal to 3/8”. 16”x16” panels were produced using random mats and 3-layer aligned mats with surface flakes parallel to the channels. Strong axis and weak axis bending tests were conducted. The test results indicate that flake orientation has little effect on the strong axis bending stiffness. The 3/8” thick random mat corrugated panels exhibit bending stiffness (400,000 lbs-in2/ft) and bending strength (3,000 in-lbs/ft) higher than 23/32” or 3/4” thick APA Rated Sturd-I-Floor with a 24” o.c. span rating. Shear and bearing test results show that the corrugated panel can withstand more than 50 psf of uniform load at 48” joist spacings. Molding trials on 16”x16” panels provided data for full size panel production. Full size 4’x8’ shallow corrugated panels were produced with only minor changes to the current oriented strandboard manufacturing process. Panel testing was done to simulate floor loading during construction, without a top underlayment layer, and during occupancy, with an underlayment over the panel to form a composite deck. Flexural tests were performed in single-span and two-span bending with line loads applied at mid-span. The average strong axis bending stiffness and bending strength of the full size corrugated panels (without the underlayment) were over 400,000 lbs-in2/ft and 3,000 in-lbs/ft, respectively. The composite deck system, which consisted of an OSB sheathing (15/32” thick) nailed-glued (using 3d ringshank nails and AFG-01 subfloor adhesive) to the corrugated subfloor achieved about 60% of the full composite stiffness resulting in about 3 times the bending stiffness of the corrugated subfloor (1,250,000 lbs-in2/ft). Based on the LRFD design criteria, the corrugated composite floor system can carry 40 psf of unfactored uniform loads, limited by the L/480 deflection limit state, at 48” joist spacings. Four 10-ft long composite T-beam specimens were built and tested for the composite action and the load sharing between a 24” wide corrugated deck system and the supporting I-joist. The average bending stiffness of the composite T-beam was 1.6 times higher than the bending stiffness of the I-joist. A 8-ft x 12-ft mock up floor was built to evaluate construction procedures. The assembly of the composite floor system is relatively simple. The corrugated composite floor system might be able to offset the cheaper labor costs of the single-layer Sturd-IFloor through the material savings. However, no conclusive result can be drawn, in terms of the construction costs, at this point without an in depth cost analysis of the two systems. The shallow corrugated composite floor system might be a potential alternative to the Sturd-I-Floor in the near future because of the excellent flexural stiffness provided.
Resumo:
Rainwater harvesting (RWH) has a long history and has been supported as an appropriate technology and relatively cheap source of domestic water supply. This study compares the suitability of RWH and piped water systems in three rural Dominican communities seeking to improve their water systems. Ethnographic methods considering the views of residents and feasibility and cost analysis of the options were used to conclude that RWH is not a feasible or cost-effective solution for domestic water needs of all households in the communities studied. RWH investment is best left to individual households that can implement informal RWH with incremental increases in storage volume. Piped water distribution (PWD) systems perceived as too large or expensive to implement have much lower capital costs and are more supported by residents as a solution because they provide large quantities of water needed to maintain water services beyond mere survival levels.
Resumo:
Spacecraft formation flying navigation continues to receive a great deal of interest. The research presented in this dissertation focuses on developing methods for estimating spacecraft absolute and relative positions, assuming measurements of only relative positions using wireless sensors. The implementation of the extended Kalman filter to the spacecraft formation navigation problem results in high estimation errors and instabilities in state estimation at times. This is due tp the high nonlinearities in the system dynamic model. Several approaches are attempted in this dissertation aiming at increasing the estimation stability and improving the estimation accuracy. A differential geometric filter is implemented for spacecraft positions estimation. The differential geometric filter avoids the linearization step (which is always carried out in the extended Kalman filter) through a mathematical transformation that converts the nonlinear system into a linear system. A linear estimator is designed in the linear domain, and then transformed back to the physical domain. This approach demonstrated better estimation stability for spacecraft formation positions estimation, as detailed in this dissertation. The constrained Kalman filter is also implemented for spacecraft formation flying absolute positions estimation. The orbital motion of a spacecraft is characterized by two range extrema (perigee and apogee). At the extremum, the rate of change of a spacecraft’s range vanishes. This motion constraint can be used to improve the position estimation accuracy. The application of the constrained Kalman filter at only two points in the orbit causes filter instability. Two variables are introduced into the constrained Kalman filter to maintain the stability and improve the estimation accuracy. An extended Kalman filter is implemented as a benchmark for comparison with the constrained Kalman filter. Simulation results show that the constrained Kalman filter provides better estimation accuracy as compared with the extended Kalman filter. A Weighted Measurement Fusion Kalman Filter (WMFKF) is proposed in this dissertation. In wireless localizing sensors, a measurement error is proportional to the distance of the signal travels and sensor noise. In this proposed Weighted Measurement Fusion Kalman Filter, the signal traveling time delay is not modeled; however, each measurement is weighted based on the measured signal travel distance. The obtained estimation performance is compared to the standard Kalman filter in two scenarios. The first scenario assumes using a wireless local positioning system in a GPS denied environment. The second scenario assumes the availability of both the wireless local positioning system and GPS measurements. The simulation results show that the WMFKF has similar accuracy performance as the standard Kalman Filter (KF) in the GPS denied environment. However, the WMFKF maintains the position estimation error within its expected error boundary when the WLPS detection range limit is above 30km. In addition, the WMFKF has a better accuracy and stability performance when GPS is available. Also, the computational cost analysis shows that the WMFKF has less computational cost than the standard KF, and the WMFKF has higher ellipsoid error probable percentage than the standard Measurement Fusion method. A method to determine the relative attitudes between three spacecraft is developed. The method requires four direction measurements between the three spacecraft. The simulation results and covariance analysis show that the method’s error falls within a three sigma boundary without exhibiting any singularity issues. A study of the accuracy of the proposed method with respect to the shape of the spacecraft formation is also presented.
Resumo:
Highway infrastructure plays a significant role in society. The building and upkeep of America’s highways provide society the necessary means of transportation for goods and services needed to develop as a nation. However, as a result of economic and social development, vast amounts of greenhouse gas emissions (GHG) are emitted into the atmosphere contributing to global climate change. In recognizing this, future policies may mandate the monitoring of GHG emissions from public agencies and private industries in order to reduce the effects of global climate change. To effectively reduce these emissions, there must be methods that agencies can use to quantify the GHG emissions associated with constructing and maintaining the nation’s highway infrastructure. Current methods for assessing the impacts of highway infrastructure include methodologies that look at the economic impacts (costs) of constructing and maintaining highway infrastructure over its life cycle. This is known as Life Cycle Cost Analysis (LCCA). With the recognition of global climate change, transportation agencies and contractors are also investigating the environmental impacts that are associated with highway infrastructure construction and rehabilitation. A common tool in doing so is the use of Life Cycle Assessment (LCA). Traditionally, LCA is used to assess the environmental impacts of products or processes. LCA is an emerging concept in highway infrastructure assessment and is now being implemented and applied to transportation systems. This research focuses on life cycle GHG emissions associated with the construction and rehabilitation of highway infrastructure using a LCA approach. Life cycle phases of the highway section include; the material acquisition and extraction, construction and rehabilitation, and service phases. Departing from traditional approaches that tend to use LCA as a way to compare alternative pavement materials or designs based on estimated inventories, this research proposes a shift to a context sensitive process-based approach that uses actual observed construction and performance data to calculate greenhouse gas emissions associated with highway construction and rehabilitation. The goal is to support strategies that reduce long-term environmental impacts. Ultimately, this thesis outlines techniques that can be used to assess GHG emissions associated with construction and rehabilitation operations to support the overall pavement LCA.
Resumo:
Civil infrastructure provides essential services for the development of both society and economy. It is very important to manage systems efficiently to ensure sound performance. However, there are challenges in information extraction from available data, which also necessitates the establishment of methodologies and frameworks to assist stakeholders in the decision making process. This research proposes methodologies to evaluate systems performance by maximizing the use of available information, in an effort to build and maintain sustainable systems. Under the guidance of problem formulation from a holistic view proposed by Mukherjee and Muga, this research specifically investigates problem solving methods that measure and analyze metrics to support decision making. Failures are inevitable in system management. A methodology is developed to describe arrival pattern of failures in order to assist engineers in failure rescues and budget prioritization especially when funding is limited. It reveals that blockage arrivals are not totally random. Smaller meaningful subsets show good random behavior. Additional overtime failure rate is analyzed by applying existing reliability models and non-parametric approaches. A scheme is further proposed to depict rates over the lifetime of a given facility system. Further analysis of sub-data sets is also performed with the discussion of context reduction. Infrastructure condition is another important indicator of systems performance. The challenges in predicting facility condition are the transition probability estimates and model sensitivity analysis. Methods are proposed to estimate transition probabilities by investigating long term behavior of the model and the relationship between transition rates and probabilities. To integrate heterogeneities, model sensitivity is performed for the application of non-homogeneous Markov chains model. Scenarios are investigated by assuming transition probabilities follow a Weibull regressed function and fall within an interval estimate. For each scenario, multiple cases are simulated using a Monte Carlo simulation. Results show that variations on the outputs are sensitive to the probability regression. While for the interval estimate, outputs have similar variations to the inputs. Life cycle cost analysis and life cycle assessment of a sewer system are performed comparing three different pipe types, which are reinforced concrete pipe (RCP) and non-reinforced concrete pipe (NRCP), and vitrified clay pipe (VCP). Life cycle cost analysis is performed for material extraction, construction and rehabilitation phases. In the rehabilitation phase, Markov chains model is applied in the support of rehabilitation strategy. In the life cycle assessment, the Economic Input-Output Life Cycle Assessment (EIO-LCA) tools are used in estimating environmental emissions for all three phases. Emissions are then compared quantitatively among alternatives to support decision making.
Resumo:
This Ph.D. research is comprised of three major components; (i) Characterization study to analyze the composition of defatted corn syrup (DCS) from a dry corn mill facility (ii) Hydrolysis experiments to optimize the production of fermentable sugars and amino acid platform using DCS and (iii) Sustainability analyses. Analyses of DCS included total solids, ash content, total protein, amino acids, inorganic elements, starch, total carbohydrates, lignin, organic acids, glycerol, and presence of functional groups. Total solids content was 37.4% (± 0.4%) by weight, and the mass balance closure was 101%. Total carbohydrates [27% (± 5%) wt.] comprised of starch (5.6%), soluble monomer carbohydrates (12%) and non-starch carbohydrates (10%). Hemicellulose components (structural and non-structural) were; xylan (6%), xylose (1%), mannan (1%), mannose (0.4%), arabinan (1%), arabinose (0.4%), galatactan (3%) and galactose (0.4%). Based on the measured physical and chemical components, bio-chemical conversion route and subsequent fermentation to value added products was identified as promising. DCS has potential to serve as an important fermentation feedstock for bio-based chemicals production. In the sugar hydrolysis experiments, reaction parameters such as acid concentration and retention time were analyzed to determine the optimal conditions to maximize monomer sugar yields while keeping the inhibitors at minimum. Total fermentable sugars produced can reach approximately 86% of theoretical yield when subjected to dilute acid pretreatment (DAP). DAP followed by subsequent enzymatic hydrolysis was most effective for 0 wt% acid hydrolysate samples and least efficient towards 1 and 2 wt% acid hydrolysate samples. The best hydrolysis scheme DCS from an industry's point of view is standalone 60 minutes dilute acid hydrolysis at 2 wt% acid concentration. The combined effect of hydrolysis reaction time, temperature and ratio of enzyme to substrate ratio to develop hydrolysis process that optimizes the production of amino acids in DCS were studied. Four key hydrolysis pathways were investigated for the production of amino acids using DCS. The first hydrolysis pathway is the amino acid analysis using DAP. The second pathway is DAP of DCS followed by protein hydrolysis using proteases [Trypsin, Pronase E (Streptomyces griseus) and Protex 6L]. The third hydrolysis pathway investigated a standalone experiment using proteases (Trypsin, Pronase E, Protex 6L, and Alcalase) on the DCS without any pretreatment. The final pathway investigated the use of Accellerase 1500® and Protex 6L to simultaneously produce fermentable sugars and amino acids over a 24 hour hydrolysis reaction time. The 3 key objectives of the techno-economic analysis component of this PhD research included; (i) Development of a process design for the production of both the sugar and amino acid platforms with DAP using DCS (ii) A preliminary cost analysis to estimate the initial capital cost and operating cost of this facility (iii) A greenhouse gas analysis to understand the environmental impact of this facility. Using Aspen Plus®, a conceptual process design has been constructed. Finally, both Aspen Plus Economic Analyzer® and Simapro® sofware were employed to conduct the cost analysis as well as the carbon footprint emissions of this process facility respectively. Another section of my PhD research work focused on the life cycle assessment (LCA) of commonly used dairy feeds in the U.S. Greenhouse gas (GHG) emissions analysis was conducted for cultivation, harvesting, and production of common dairy feeds used for the production of dairy milk in the U.S. The goal was to determine the carbon footprint [grams CO2 equivalents (gCO2e)/kg of dry feed] in the U.S. on a regional basis, identify key inputs, and make recommendations for emissions reduction. The final section of my Ph.D. research work was an LCA of a single dairy feed mill located in Michigan, USA. The primary goal was to conduct a preliminary assessment of dairy feed mill operations and ultimately determine the GHG emissions for 1 kilogram of milled dairy feed.
Resumo:
Michigan depends heavily on fossil fuels to generate electricity. Compared with fossil fuels, electricity generation from renewable energy produces less pollutants emissions. A Renewable Portfolio Standard (RPS) is a mandate that requires electric utilities to generate a certain amount of electricity from renewable energy sources. This thesis applies the Cost-Benefits Analysis (CBA) method to investigate the impacts of implementing a 25% in Michigan by 2025. It is found that a 25% RPS will create about $20.12 billion in net benefits to the State. Moreover, if current tax credit policies will not change until 2025, its net present value will increase to about $26.59 billion. Based on the results of this CBA, a 25% RPS should be approved. The result of future studies on the same issue can be improved if more state specific data become available.
Resumo:
This thesis develops high performance real-time signal processing modules for direction of arrival (DOA) estimation for localization systems. It proposes highly parallel algorithms for performing subspace decomposition and polynomial rooting, which are otherwise traditionally implemented using sequential algorithms. The proposed algorithms address the emerging need for real-time localization for a wide range of applications. As the antenna array size increases, the complexity of signal processing algorithms increases, making it increasingly difficult to satisfy the real-time constraints. This thesis addresses real-time implementation by proposing parallel algorithms, that maintain considerable improvement over traditional algorithms, especially for systems with larger number of antenna array elements. Singular value decomposition (SVD) and polynomial rooting are two computationally complex steps and act as the bottleneck to achieving real-time performance. The proposed algorithms are suitable for implementation on field programmable gated arrays (FPGAs), single instruction multiple data (SIMD) hardware or application specific integrated chips (ASICs), which offer large number of processing elements that can be exploited for parallel processing. The designs proposed in this thesis are modular, easily expandable and easy to implement. Firstly, this thesis proposes a fast converging SVD algorithm. The proposed method reduces the number of iterations it takes to converge to correct singular values, thus achieving closer to real-time performance. A general algorithm and a modular system design are provided making it easy for designers to replicate and extend the design to larger matrix sizes. Moreover, the method is highly parallel, which can be exploited in various hardware platforms mentioned earlier. A fixed point implementation of proposed SVD algorithm is presented. The FPGA design is pipelined to the maximum extent to increase the maximum achievable frequency of operation. The system was developed with the objective of achieving high throughput. Various modern cores available in FPGAs were used to maximize the performance and details of these modules are presented in detail. Finally, a parallel polynomial rooting technique based on Newton’s method applicable exclusively to root-MUSIC polynomials is proposed. Unique characteristics of root-MUSIC polynomial’s complex dynamics were exploited to derive this polynomial rooting method. The technique exhibits parallelism and converges to the desired root within fixed number of iterations, making this suitable for polynomial rooting of large degree polynomials. We believe this is the first time that complex dynamics of root-MUSIC polynomial were analyzed to propose an algorithm. In all, the thesis addresses two major bottlenecks in a direction of arrival estimation system, by providing simple, high throughput, parallel algorithms.