2 resultados para Beneficial insects

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Streams and riparian areas can be intricately connected via physical and biotic interactions that influence habitat conditions and supply resource subsidies between these ecosystems. Streambed characteristics such as the size of substrate particles influence the composition and the abundance of emergent aquatic insects, which can be an important resource for riparian breeding birds. We predict fine sediment abundance in small headwater streams directly affects the composition and number of emergent insects while it may indirectly affect riparian bird assemblages. Streams with abundant fine sediments that embed larger substrates should have lower emergence of large insects such as phemeroptera, Plecoptera and Trichoptera. Streams with lower emergent insect abundance are predicted to support fewer breeding birds and may lack certain bird species that specialize on aquatic insects. This study examined relationships between streambed characteristics, and emergent insects (composition, abundance and biomass), and riparian breeding birds (abundance and richness) along headwater streams of the Otter River Watershed. The stream bed habitats of seven stream reaches were characterized using longitudinal surveys. Malaise traps were deployed to sample emergent aquatic insects. Riparian breeding birds were surveyed using fixed-radius point-counts. Streams differed within a wide range of fine sediment abundances. Total emergent aquatic insect abundance increased as coverage by instream substrates increased in diameter, while bird community was unresponsive to insect or stream features. Knowledge of stream and riparian relationships is important for understanding of food webs in these ecosystems, and it is useful for riparian forest conservation and improving land-use management to reduce sediment pollution in these systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the physical characteristics of lightweight concrete produced using waste materials as coarse aggregate. The study was inspired by the author’s Peace Corps service in Kilwa, Tanzania. Coconut shell, sisal fiber, and PET plastic were chosen as the test waste products due to their abundance in the area. Two mixes were produced for each waste product and the mix proportions designed for resulting compressive strengths of 3000 and 5000 psi. The proportions were selected based on guidelines for lightweight concrete from the American Concrete Institute. In preparation for mixing, coconut shells were crushed into aggregate no larger than 3/4 inch, sisal fiber was cut into pieces no longer than 3/8 inch, and PET plastic was shredded into 1/4 inch-wide strips no longer than 6 inches. Replicate samples were mixed and then cured for 28 days before they were tested for compressive strength, unit weight, and absorption. The resulting data were compared to ASTM Standards for lightweight concrete masonry units to determine their adequacy. Based on these results, there is potential for coconut shell to be used as coarse aggregate in lightweight concrete. Sisal fiber was unsuccessful in producing the appropriate compressive strength. However, the reduction in spalling of the hardened concrete and the induction of air in the mixes incorporating sisal fiber suggests that it has the potential to improve other characteristics of lightweight concrete. Concrete mixes using PET plastic as aggregate resulted in adequate compressive strengths, but were too dense to be considered ‘lightweight’ concrete. With some adjustments to slightly decrease absorption and unit weight, the PET plastic concrete mixes could be classified as medium weight concrete and, therefore, achieve many of the same benefits as would be seen with lightweight concrete.