2 resultados para Bay Area Rapid Transit System.
em Digital Commons - Michigan Tech
Resumo:
Data on the evolution of geomagnetic paleointensity are crucial for understanding the geodynamo and Earth’s thermal history. Although basaltic flows are preferred for paleointensity experiments, quickly cooled mafic dykes have also been used. However, the paleointensity values obtained from the dykes are systematically lower than those from lava flows. This bias may originate from the difference in cooling histories and resultant magnetic mineralogies of extrusive and intrusive rocks. To explore this hypothesis, the magnetic mineralogy of two feeder dyke-lave flow systems, from Thunder Bay (Canada) and La Cienega (New-Mexico), has been studied using magnetic and microscopy methods. Within each system, the flow and dyke show different stages of deuteric oxidation of titanomagnetite, but the oxidation stages also differ between the two systems. It is concluded that the tested hypothesis is viable, but the relationships between the magnetic and mineralogical properties of flows and dykes are complex and need a further investigation.
Resumo:
The objective of this research was to develop a high-fidelity dynamic model of a parafoilpayload system with respect to its application for the Ship Launched Aerial Delivery System (SLADS). SLADS is a concept in which cargo can be transfered from ship to shore using a parafoil-payload system. It is accomplished in two phases: An initial towing phase when the glider follows the towing vessel in a passive lift mode and an autonomous gliding phase when the system is guided to the desired point. While many previous researchers have analyzed the parafoil-payload system when it is released from another airborne vehicle, limited work has been done in the area of towing up the system from ground or sea. One of the main contributions of this research was the development of a nonlinear dynamic model of a towed parafoil-payload system. After performing an extensive literature review of the existing methods of modeling a parafoil-payload system, a five degree-of-freedom model was developed. The inertial and geometric properties of the system were investigated to predict accurate results in the simulation environment. Since extensive research has been done in determining the aerodynamic characteristics of a paraglider, an existing aerodynamic model was chosen to incorporate the effects of air flow around the flexible paraglider wing. During the towing phase, it is essential that the parafoil-payload system follow the line of the towing vessel path to prevent an unstable flight condition called ‘lockout’. A detailed study of the causes of lockout, its mathematical representation and the flight conditions and the parameters related to lockout, constitute another contribution of this work. A linearized model of the parafoil-payload system was developed and used to analyze the stability of the system about equilibrium conditions. The relationship between the control surface inputs and the stability was investigated. In addition to stability of flight, one more important objective of SLADS is to tow up the parafoil-payload system as fast as possible. The tension in the tow cable is directly proportional to the rate of ascent of the parafoil-payload system. Lockout instability is more favorable when tow tensions are large. Thus there is a tradeoff between susceptibility to lockout and rapid deployment. Control strategies were also developed for optimal tow up and to maintain stability in the event of disturbances.