3 resultados para Basalt
em Digital Commons - Michigan Tech
Resumo:
Since the introduction of the rope-pump in Nicaragua in the 1990s, the dependence on wells in rural areas has grown steadily. However, little or no attention is paid to rope-pump well performance after installation. Due to financial restraints, groundwater resource monitoring using conventional testing methods is too costly and out of reach of rural municipalities. Nonetheless, there is widespread agreement that without a way to quantify the changes in well performance over time, prioritizing regulatory actions is impossible. A manual pumping test method is presented, which at a fraction of the cost of a conventional pumping test, measures the specific capacity of rope-pump wells. The method requires only sight modifcations to the well and reasonable limitations on well useage prior to testing. The pumping test was performed a minimum of 33 times in three wells over an eight-month period in a small rural community in Chontales, Nicaragua. Data was used to measure seasonal variations in specific well capacity for three rope-pump wells completed in fractured crystalline basalt. Data collected from the tests were analyzed using four methods (equilibrium approximation, time-drawdown during pumping, time-drawdown during recovery, and time-drawdown during late-time recovery) to determine the best data-analyzing method. One conventional pumping test was performed to aid in evaluating the manual method. The equilibrim approximation can be performed while in the field with only a calculator and is the most technologically appropriate method for analyzing data. Results from this method overestimate specific capacity by 41% when compared to results from the conventional pumping test. The other analyes methods, requiring more sophisticated tools and higher-level interpretation skills, yielded results that agree to within 14% (pumping phase), 31% (recovery phase) and 133% (late-time recovery) of the conventional test productivity value. The wide variability in accuracy results principally from difficulties in achieving equilibrated pumping level and casing storage effects in the puping/recovery data. Decreases in well productivity resulting from naturally occuring seasonal water-table drops varied from insignificant in two wells to 80% in the third. Despite practical and theoretical limitations on the method, the collected data may be useful for municipal institutions to track changes in well behavior, eventually developing a database for planning future ground water development projects. Furthermore, the data could improve well-users’ abilities to self regulate well usage without expensive aquifer characterization.
Resumo:
A detailed paleomagnetic and rock-magnetic investigation was conducted on thirty six basaltic flows of the ~1095 Ma Portage Lake Volcanics. The flows were sampled along the East Adit of the Quincy Mine (Hancock, MI). Thirty two flows yielded well-defined primary magnetization directions carried by magnetite. A secondary magnetization component carried by hematite was also found in twenty nine flows. After correction for serial correlation between the flows, nineteen independent mean directions were calculated. The corresponding paleomagnetic pole is located at 25.5 °N, 182.1 °W (A95 = 3.5°). The new pole overlaps with the pole from the ~1087 Ma Lake Shore Traps suggesting a standstill of the North American plate during that time period. The low angular dispersion of virtual geomagnetic poles (S = 7.9°) suggests that the flows were erupted within a short time period, or that the strength of geomagnetic secular variation was lower than that of the recent field.
Resumo:
Gravity-flow aqueducts are used to bring clean water from mountain springs in the Comarca Ngäbe-Buglé, Panama, to the homes of the indigenous people who reside there. Spring captures enclose a spring to direct the flow of water into the transmission line. Seepage contact springs are most common, with water appearing above either hard basalt bedrock or a dense clay layer. Spring flows vary dramatically during wet and dry seasons, and discharge points of springs can shift, sometimes enough to impact the capture structure and its ability to properly collect all of the available water. Traditionally, spring captures are concrete boxes. The spring boxes observed by the author were dilapidated or out of alignment with the spring itself, only capturing part of the discharge. An improved design approach was developed that mimics the terrain surrounding the spring source to address these issues. Over the course of a year, three different spring sites were evaluated, and spring captures were designed and constructed based on the new approach. Spring flow data from each case study demonstrate increased flow capture in the improved structures. Rural water systems, including spring captures, can be sustainably maintained by the Circuit Rider model, a technical support system in which technical assistance is provided for the operation of the water systems. During 2012-2013, the author worked as a Circuit Rider and facilitated a water system improvement project while exploring methods of community empowerment to increase the capacity for system maintenance. Based on these experiences, recommendations are provided to expand the Circuit Rider model in the Comarca Ngäbe-Buglé under the Panamanian Ministry of Health’s Water and Sanitation Project (PASAP)