2 resultados para Band gap energy

em Digital Commons - Michigan Tech


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Carbon nanotube (CNT) is a one dimensional (1-D) nanostructured material, which has been the focal point of research over the past decade for intriguing applications ranging from nanoelectronics to chemical and biological sensors. Using a first-principles gradient corrected density functional approach, we present a comprehensive study of the geometry and energy band gap in zig-zag semi-conducting (n,0) carbon nanotubes (CNT) to resolve some of the conflicting findings. Our calculations confirm that the single wall (n,0) CNTs fall into two distinct classes depending upon n mod 3 equal to 1 (smaller band gaps) or 2 (larger gaps). The effect of longitudinal strain on the band gap further confirms the existence of two distinct classes: for n mod 3 = 1 or 2, changing Eg by ~ ±110 meV for 1% strain in each case. We also present our findings for the origin of metallicity in multiwall CNTs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Magnetic iron garnets as well as magnetic photonic crystals are of great interests in magneto-optic applications such as isolators, current captors, circulators, TE-TM mode conversion, wavelength accordable filters, optical sensors and switches, all of which provide a promising platform for future integrated optical circuits. In the present work, two topics are studied based on magnetic iron garnet films. In the first part, the characteristics of the magnetization are investigated for ridge waveguides fabricated on (100) oriented iron garnet thin films. The magnetic response in magneto-optic waveguides patterned on epitaxial magnetic garnet films depends on the crystallographic orientation of the waveguides and the magnetic anisotropy of the material. These can be studied by polarization rotation hysteresis loops, which are related to the component of magnetization parallel to the light propagation direction and the linear birefringence. Polarization rotation hysteresis loops for low birefringence waveguides with different orientations are experimentally investigated. Asymmetric stepped curves are obtained from waveguides along, due to the large magnetocrystalline anisotropy in the plane. A model based on the free energy density is developed to demonstrate the motion of the magnetization and can be used in the design of magneto-optic devices. The second part of this thesis focuses on the design and fabrication of high-Q cavities in two-dimensional magneto-photonic crystal slabs. The device consists of a layer of silicon and a layer of iron garnet thin film. Triangular lattice elliptical air holes are patterned in the slab. The fundamental TM band gap overlaps with the first-order TE band gap from 0374~0.431(a/λ) showing that both TE and TM polarization light can be confined in the photonic crystals. A nanocavity is designed to obtain both TE and TM defect modes in the band gaps. Additional work is needed to overlap the TE and TM defect modes and obtain a high-Q cavity so as to develop miniaturized Faraday rotators.