10 resultados para BOILING NUCLEATION
em Digital Commons - Michigan Tech
Resumo:
The dissipation of high heat flux from integrated circuit chips and the maintenance of acceptable junction temperatures in high powered electronics require advanced cooling technologies. One such technology is two-phase cooling in microchannels under confined flow boiling conditions. In macroscale flow boiling bubbles will nucleate on the channel walls, grow, and depart from the surface. In microscale flow boiling bubbles can fill the channel diameter before the liquid drag force has a chance to sweep them off the channel wall. As a confined bubble elongates in a microchannel, it traps thin liquid films between the heated wall and the vapor core that are subject to large temperature gradients. The thin films evaporate rapidly, sometimes faster than the incoming mass flux can replenish bulk fluid in the microchannel. When the local vapor pressure spike exceeds the inlet pressure, it forces the upstream interface to travel back into the inlet plenum and create flow boiling instabilities. Flow boiling instabilities reduce the temperature at which critical heat flux occurs and create channel dryout. Dryout causes high surface temperatures that can destroy the electronic circuits that use two-phase micro heat exchangers for cooling. Flow boiling instability is characterized by periodic oscillation of flow regimes which induce oscillations in fluid temperature, wall temperatures, pressure drop, and mass flux. When nanofluids are used in flow boiling, the nanoparticles become deposited on the heated surface and change its thermal conductivity, roughness, capillarity, wettability, and nucleation site density. It also affects heat transfer by changing bubble departure diameter, bubble departure frequency, and the evaporation of the micro and macrolayer beneath the growing bubbles. Flow boiling was investigated in this study using degassed, deionized water, and 0.001 vol% aluminum oxide nanofluids in a single rectangular brass microchannel with a hydraulic diameter of 229 µm for one inlet fluid temperature of 63°C and two constant flow rates of 0.41 ml/min and 0.82 ml/min. The power input was adjusted for two average surface temperatures of 103°C and 119°C at each flow rate. High speed images were taken periodically for water and nanofluid flow boiling after durations of 25, 75, and 125 minutes from the start of flow. The change in regime timing revealed the effect of nanoparticle suspension and deposition on the Onset of Nucelate Boiling (ONB) and the Onset of Bubble Elongation (OBE). Cycle duration and bubble frequencies are reported for different nanofluid flow boiling durations. The addition of nanoparticles was found to stabilize bubble nucleation and growth and limit the recession rate of the upstream and downstream interfaces, mitigating the spreading of dry spots and elongating the thin film regions to increase thin film evaporation.
Resumo:
Spray characterization under flash boiling conditions was investigated utilizing a symmetric multi-hole injector applicable to the gasoline direct injection (GDI) engine. Tests were performed in a constant volume combustion vessel using a high-speed schlieren and Mie scattering imaging systems. Four fuels including n-heptane, 100% ethanol, pure ethanol blended with 15% iso-octane by volume, and test grade E85 were considered in the study. Experimental conditions included various ambient pressure, fuel temperature, and fuel injection pressure. Visualization of the vaporizing spray development was acquired by utilizing schlieren and laser-based Mie scattering techniques. Time evolved spray tip penetration, spray angle, and the ratio of the vapor to liquid region were analyzed by utilizing digital image processing techniques in MATLAB. This research outlines spray characteristics at flash boiling and non-flash boiling conditions. At flash boiling conditions it was observed that individual plumes merge together, leading to significant contraction in spray angle as compared to non-flash boiling conditions. The results indicate that at flash boiling conditions, spray formation and expansion of vapor region is dependent on momentum exchange offered by the ambient gas. A relation between momentum exchange and liquid spray angle formed was also observed.
Resumo:
While nucleation of solids in supercooled liquids is ubiquitous [15, 65, 66], surface crystallization, the tendency for freezing to begin preferentially at the liquid-gas interface, has remained puzzling [74, 18, 68, 69, 51, 64, 72, 16]. Here we employ high-speed imaging of supercooled water drops to study the phenomenon of heterogeneous surface crystallization. Our geometry avoids the "point-like contact" of prior experiments by providing a simple, symmetric contact line (triple line defined by the substrate-liquid-air interface) for a drop resting on a homogeneous silicon substrate. We examine three possible mechanisms that might explain these laboratory observations: (i) Line Tension at the triple line, (ii) Thermal Gradients within the droplets and (iii) Surface Texture. In our first study we record nearly perfect spatial uniformity in the immersed (liquid-substrate) region and, thereby, no preference for nucleation at the triple line. In our second study, no influence of thermal gradients on the preference for freezing at the triple line was observed. Motivated by the conjectured importance of line tension (τ) [1, 66] for heterogeneous nucleation, we also searched for evidence of a transition to surface crystallization at length scales on the order of δ ∼ τ/σ, where σ is the surface tension [14]; poorly constrained τ [49] leads to δ ranging from microns to nanometers. We demonstrate that nano-scale texture causes a shift in the nucleation to the three-phase contact line, while micro-scale texture does not. The possibility of a critical length scale has implications for the effectiveness of nucleation catalysts, including formation of ice in atmospheric clouds [7].
Resumo:
Space-based (satellite, scientific probe, space station, etc.) and millimeter – to – microscale (such as are used in high power electronics cooling, weapons cooling in aircraft, etc.) condensers and boilers are shear/pressure driven. They are of increasing interest to system engineers for thermal management because flow boilers and flow condensers offer both high fluid flow-rate-specific heat transfer capacity and very low thermal resistance between the fluid and the heat exchange surface, so large amounts of heat may be removed using reasonably-sized devices without the need for excessive temperature differences. However, flow stability issues and degradation of performance of shear/pressure driven condensers and boilers due to non-desirable flow morphology over large portions of their lengths have mostly prevented their use in these applications. This research is part of an ongoing investigation seeking to close the gap between science and engineering by analyzing two key innovations which could help address these problems. First, it is recommended that the condenser and boiler be operated in an innovative flow configuration which provides a non-participating core vapor stream to stabilize the annular flow regime throughout the device length, accomplished in an energy-efficient manner by means of ducted vapor re-circulation. This is demonstrated experimentally. Second, suitable pulsations applied to the vapor entering the condenser or boiler (from the re-circulating vapor stream) greatly reduce the thermal resistance of the already effective annular flow regime. For experiments reported here, application of pulsations increased time-averaged heat-flux up to 900 % at a location within the flow condenser and up to 200 % at a location within the flow boiler, measured at the heat-exchange surface. Traditional fully condensing flows, reported here for comparison purposes, show similar heat-flux enhancements due to imposed pulsations over a range of frequencies. Shear/pressure driven condensing and boiling flow experiments are carried out in horizontal mm-scale channels with heat exchange through the bottom surface. The sides and top of the flow channel are insulated. The fluid is FC-72 from 3M Corporation.
Resumo:
As water quality interventions are scaled up to meet the Millennium Development Goal of halving the proportion of the population without access to safe drinking water by 2015 there has been much discussion on the merits of household- and source-level interventions. This study furthers the discussion by examining specific interventions through the use of embodied human and material energy. Embodied energy quantifies the total energy required to produce and use an intervention, including all upstream energy transactions. This model uses material quantities and prices to calculate embodied energy using national economic input/output-based models from China, the United States and Mali. Embodied energy is a measure of aggregate environmental impacts of the interventions. Human energy quantifies the caloric expenditure associated with the installation and operation of an intervention is calculated using the physical activity ratios (PARs) and basal metabolic rates (BMRs). Human energy is a measure of aggregate social impacts of an intervention. A total of four household treatment interventions – biosand filtration, chlorination, ceramic filtration and boiling – and four water source-level interventions – an improved well, a rope pump, a hand pump and a solar pump – are evaluated in the context of Mali, West Africa. Source-level interventions slightly out-perform household-level interventions in terms of having less total embodied energy. Human energy, typically assumed to be a negligible portion of total embodied energy, is shown to be significant to all eight interventions, and contributing over half of total embodied energy in four of the interventions. Traditional gender roles in Mali dictate the types of work performed by men and women. When the human energy is disaggregated by gender, it is seen that women perform over 99% of the work associated with seven of the eight interventions. This has profound implications for gender equality in the context of water quality interventions, and may justify investment in interventions that reduce human energy burdens.
Resumo:
The objective of this doctoral research is to investigate the internal frost damage due to crystallization pore pressure in porous cement-based materials by developing computational and experimental characterization tools. As an essential component of the U.S. infrastructure system, the durability of concrete has significant impact on maintenance costs. In cold climates, freeze-thaw damage is a major issue affecting the durability of concrete. The deleterious effects of the freeze-thaw cycle depend on the microscale characteristics of concrete such as the pore sizes and the pore distribution, as well as the environmental conditions. Recent theories attribute internal frost damage of concrete is caused by crystallization pore pressure in the cold environment. The pore structures have significant impact on freeze-thaw durability of cement/concrete samples. The scanning electron microscope (SEM) and transmission X-ray microscopy (TXM) techniques were applied to characterize freeze-thaw damage within pore structure. In the microscale pore system, the crystallization pressures at sub-cooling temperatures were calculated using interface energy balance with thermodynamic analysis. The multi-phase Extended Finite Element Modeling (XFEM) and bilinear Cohesive Zone Modeling (CZM) were developed to simulate the internal frost damage of heterogeneous cement-based material samples. The fracture simulation with these two techniques were validated by comparing the predicted fracture behavior with the captured damage from compact tension (CT) and single-edge notched beam (SEB) bending tests. The study applied the developed computational tools to simulate the internal frost damage caused by ice crystallization with the two dimensional (2-D) SEM and three dimensional (3-D) reconstructed SEM and TXM digital samples. The pore pressure calculated from thermodynamic analysis was input for model simulation. The 2-D and 3-D bilinear CZM predicted the crack initiation and propagation within cement paste microstructure. The favorably predicted crack paths in concrete/cement samples indicate the developed bilinear CZM techniques have the ability to capture crack nucleation and propagation in cement-based material samples with multiphase and associated interface. By comparing the computational prediction with the actual damaged samples, it also indicates that the ice crystallization pressure is the main mechanism for the internal frost damage in cementitious materials.
Resumo:
This doctoral thesis presents the computational work and synthesis with experiments for internal (tube and channel geometries) as well as external (flow of a pure vapor over a horizontal plate) condensing flows. The computational work obtains accurate numerical simulations of the full two dimensional governing equations for steady and unsteady condensing flows in gravity/0g environments. This doctoral work investigates flow features, flow regimes, attainability issues, stability issues, and responses to boundary fluctuations for condensing flows in different flow situations. This research finds new features of unsteady solutions of condensing flows; reveals interesting differences in gravity and shear driven situations; and discovers novel boundary condition sensitivities of shear driven internal condensing flows. Synthesis of computational and experimental results presented here for gravity driven in-tube flows lays framework for the future two-phase component analysis in any thermal system. It is shown for both gravity and shear driven internal condensing flows that steady governing equations have unique solutions for given inlet pressure, given inlet vapor mass flow rate, and fixed cooling method for condensing surface. But unsteady equations of shear driven internal condensing flows can yield different “quasi-steady” solutions based on different specifications of exit pressure (equivalently exit mass flow rate) concurrent to the inlet pressure specification. This thesis presents a novel categorization of internal condensing flows based on their sensitivity to concurrently applied boundary (inlet and exit) conditions. The computational investigations of an external shear driven flow of vapor condensing over a horizontal plate show limits of applicability of the analytical solution. Simulations for this external condensing flow discuss its stability issues and throw light on flow regime transitions because of ever-present bottom wall vibrations. It is identified that laminar to turbulent transition for these flows can get affected by ever present bottom wall vibrations. Detailed investigations of dynamic stability analysis of this shear driven external condensing flow result in the introduction of a new variable, which characterizes the ratio of strength of the underlying stabilizing attractor to that of destabilizing vibrations. Besides development of CFD tools and computational algorithms, direct application of research done for this thesis is in effective prediction and design of two-phase components in thermal systems used in different applications. Some of the important internal condensing flow results about sensitivities to boundary fluctuations are also expected to be applicable to flow boiling phenomenon. Novel flow sensitivities discovered through this research, if employed effectively after system level analysis, will result in the development of better control strategies in ground and space based two-phase thermal systems.
Resumo:
Understanding clouds and their role in climate depends in part on our ability to understand how individual cloud particles respond to environmental conditions. Keeping this objective in mind, a quadrupole trap with thermodynamic control has been designed and constructed in order to create an environment conducive to studying clouds in the laboratory. The quadrupole trap allows a single cloud particle to be suspended for long times. The temperature and water vapor saturation ratio near the trapped particle is controlled by the flow of saturated air through a tube with a discontinuous wall temperature. The design has the unique aspect that the quadrupole electrodes are submerged in heat transfer fluid, completely isolated from the cylindrical levitation volume. This fluid is used in the thermodynamic system to cool the chamber to realistic cloud temperatures, and a heated section of the tube provides for the temperature discontinuity. Thus far, charged water droplets, ranging from about 30-70 microns in diameter have been levitated. In addition, the thermodynamic system has been shown to create the necessary thermal conditions that will create supersaturated conditions in subsequent experiments. These advances will help lead to the next generation of ice nucleation experiments, moving from hemispherical droplets on a substrate to a spherical droplet that is not in contact with any surface.
Resumo:
The exsolution of volatiles from magma maintains an important control on volcanic eruption styles. The nucleation, growth, and connectivity of bubbles during magma ascent provide the driving force behind eruptions, and the rate, volume, and ease of gas exsolution can affect eruptive activity. Volcanic plumes are the observable consequence of this magmatic degassing, and remote sensing techniques allow us to quantify changes in gas exsolution. However, until recently the methods used to measure volcanic plumes did not have the capability of detecting rapid changes in degassing on the scale of standard geophysical observations. The advent of the UV camera now makes high sample rate gas measurements possible. This type of dataset can then be compared to other volcanic observations to provide an in depth picture of degassing mechanisms in the shallow conduit. The goals of this research are to develop a robust methodology for UV camera field measurements of volcanic plumes, and utilize this data in conjunction with seismoacoustic records to illuminate degassing processes. Field and laboratory experiments were conducted to determine the effects of imaging conditions, vignetting, exposure time, calibration technique, and filter usage on the UV camera sulfur dioxide measurements. Using the best practices determined from these studies, a field campaign was undertaken at Volcán de Pacaya, Guatemala. Coincident plume sulfur dioxide measurements, acoustic recordings, and seismic observations were collected and analyzed jointly. The results provide insight into the small explosive features, variations in degassing rate, and plumbing system of this complex volcanic system. This research provides useful information for determining volcanic hazard at Pacaya, and demonstrates the potential of the UV camera in multiparameter studies.