6 resultados para BIOTIC INTERCHANGE
em Digital Commons - Michigan Tech
Resumo:
Multiple indices of biotic integrity and biological condition gradient models have been developed and validated to assess ecological integrity in the Laurentian Great Lakes Region. With multiple groups such as Tribal, Federal, and State agencies as well as scientists and local watershed management or river-focused volunteer groups collecting data for bioassessment it is important that we determine the comparability of data and the effectiveness of indices applied to these data for assessment of natural systems. We evaluated the applicability of macroinvertebrate and fish community indices for assessing site integrity. Site quality (i.e., habitat condition) could be classified differently depending on which index was applied. This highlights the need to better understand the metrics driving index variation as well as reference conditions for effective communication and use of indices of biotic integrity in the Upper Midwest. We found the macroinvertebrate benthic community index for the Northern Lakes and Forests Ecoregion and a coldwater fish index of biotic integrity for the Upper Midwest were most appropriate for use in the Big Manistee River watershed based on replicate sampling, ability to track trends over time and overall performance. We evaluated three sites where improper road stream crossings (culverts) were improved by replacing them with modern full-span structures using the most appropriate fish and macroinvertebrate IBIs. We used a before-after-control-impact paired series analytical design and found mixed results, with evidence of improvement in biotic integrity based on macroinvertebrate indices at some of the sites while most sites indicated no response in index score. Culvert replacements are often developed based on the potential, or the perception, that they will restore ecological integrity. As restoration practitioners, researchers and managers, we need to be transparent in our goals and objectives and monitor for those results specifically. The results of this research serve as an important model for the broader field of ecosystem restoration and support the argument that while biotic communities can respond to actions undertaken with the goal of overall restoration, practitioners should be realistic in their expectations and claims of predicted benefit, and then effectively evaluate the true impacts of the restoration activities.
Resumo:
Secondary metabolites play an important role in plant protection against biotic and abiotic stress. In Populus, phenolic glycosides (PGs) and condensed tannins (CTs) are two such groups of compounds derived from the common phenylpropanoid pathway. The basal levels and the inducibility of PGs and CTs depend on genetic as well as environmental factors, such as soil nitrogen (N) level. Carbohydrate allocation, transport and sink strength also affect PG and CT levels. A negative correlation between the levels of PGs and CTs was observed in several studies. However, the molecular mechanism underlying such relation is not known. We used a cell culture system to understand negative correlation of PGs and CTs. Under normal culture conditions, neither salicin nor higher-order PGs accumulated in cell cultures. Several factors, such as hormones, light, organelles and precursors were discussed in the context of aspen suspension cells’ inability to synthesize PGs. Salicin and its isomer, isosalicin, were detected in cell cultures fed with salicyl alcohol, salicylaldehyde and helicin. At higher levels (5 mM) of salicyl alcohol feeding, accumulation of salicins led to reduced CT production in the cells. Based on metabolic and gene expression data, the CT reduction in salicin-accumulating cells is partly a result of regulatory changes at the transcriptional level affecting carbon partitioning between growth processes, and phenylpropanoid CT biosynthesis. Based on molecular studies, the glycosyltransferases, GT1-2 and GT1-246, may function in glycosylation of simple phenolics, such as salicyl alcohol in cell cultures. The uptake of such glycosides into vacuole may be mediated to some extent by tonoplast localized multidrug-resistance associated protein transporters, PtMRP1 and PtMRP6. In Populus, sucrose is the common transported carbohydrate and its transport is possibly regulated by sucrose transporters (SUTs). SUTs are also capable of transporting simple PGs, such as salicin. Therefore, we characterized the SUT gene family in Populus and investigated, by transgenic analysis, the possible role of the most abundantly expressed member, PtSUT4, in PG-CT homeostasis using plants grown under varying nitrogen regimes. PtSUT4 transgenic plants were phenotypically similar to the wildtype plants except that the leaf area-to-stem volume ratio was higher for transgenic plants. In SUT4 transgenics, levels of non-structural carbohydrates, such as sucrose and starch, were altered in mature leaves. The levels of PGs and CTs were lower in green tissues of transgenic plants under N-replete, but were higher under N-depleted conditions, compared to the levels in wildtype plants. Based on our results, SUT4 partly regulates N-level dependent PG-CT homeostasis by differential carbohydrate allocation.
Resumo:
Ecological disturbances may be caused by a range of biotic and abiotic factors. Among these are disturbances that result from human activities such as the introduction of exotic plants and land management activities. This dissertation addresses both of these types of disturbance in ecosystems in the Upper Peninsula of Michigan. Invasive plants are a significant cause of disturbance at Pictured Rocks Natural Lakeshore. Management of invasive plants is dependent on understanding what areas are at risk of being invaded, what the consequences of an invasion are on native plant communities and how effective different tools are for managing the invasive species. A series of risk models are described that predict three stages of invasion (introduction, establishment and spread) for eight invasive plant species at Pictured Rocks National Lakeshore. These models are specific to this location and include species for which models have not previously been produced. The models were tested by collecting point data throughout the park to demonstrate their effectiveness for future detection of invasive plants in the park. Work to describe the impacts and management of invasive plants focused on spotted knapweed in the sensitive Grand Sable Dunes area of Pictured Rocks National Lakeshore. Impacts of spotted knapweed were assessed by comparing vegetation communities in areas with varying amounts of spotted knapweed. This work showed significant increases in species diversity in areas invaded by knapweed, apparently as a result of the presence of a number of non-dune species that have become established in spotted knapweed invaded areas. An experiment was carried out to compare annual spot application of two herbicides, Milestone® and Transline® to target spotted knapweed. This included an assessment of impacts of this type of treatment on non-target species. There was no difference in the effectiveness of the two herbicides, and both significantly reduced the density of spotted knapweed during the course of the study. Areas treated with herbicide developed a higher percent cover of grasses during the study, and suffered limited negative impacts on some sensitive dune species such as beach pea and dune stitchwort, and on some other non-dune species such as hawkweed. The use of these herbicides to reduce the density of spotted knapweed appears to be feasible over large scales.
Resumo:
Streams and riparian areas can be intricately connected via physical and biotic interactions that influence habitat conditions and supply resource subsidies between these ecosystems. Streambed characteristics such as the size of substrate particles influence the composition and the abundance of emergent aquatic insects, which can be an important resource for riparian breeding birds. We predict fine sediment abundance in small headwater streams directly affects the composition and number of emergent insects while it may indirectly affect riparian bird assemblages. Streams with abundant fine sediments that embed larger substrates should have lower emergence of large insects such as phemeroptera, Plecoptera and Trichoptera. Streams with lower emergent insect abundance are predicted to support fewer breeding birds and may lack certain bird species that specialize on aquatic insects. This study examined relationships between streambed characteristics, and emergent insects (composition, abundance and biomass), and riparian breeding birds (abundance and richness) along headwater streams of the Otter River Watershed. The stream bed habitats of seven stream reaches were characterized using longitudinal surveys. Malaise traps were deployed to sample emergent aquatic insects. Riparian breeding birds were surveyed using fixed-radius point-counts. Streams differed within a wide range of fine sediment abundances. Total emergent aquatic insect abundance increased as coverage by instream substrates increased in diameter, while bird community was unresponsive to insect or stream features. Knowledge of stream and riparian relationships is important for understanding of food webs in these ecosystems, and it is useful for riparian forest conservation and improving land-use management to reduce sediment pollution in these systems.
Resumo:
Hardwoods comprise about half of the biomass of forestlands in North America and present many uses including economic, ecological and aesthetic functions. Forest trees rely on the genetic variation within tree populations to overcome the many biotic, abiotic, anthropogenic factors which are further worsened by climate change, that threaten their continued survival and functionality. To harness these inherent genetic variations of tree populations, informed knowledge of the genomic resources and techniques, which are currently lacking or very limited, are imperative for forest managers. The current study therefore aimed to develop genomic microsatellite markers for the leguminous tree species, honey locust, Gleditsia triacanthos L. and test their applicability in assessing genetic variation, estimation of gene flow patterns and identification of a full-sib mapping population. We also aimed to test the usefulness of already developed nuclear and gene-based microsatellite markers in delineation of species and taxonomic relationships between four of the taxonomically difficult Section Lobatae species (Quercus coccinea, Q. ellipsoidalis, Q. rubra and Q. velutina. We recorded 100% amplification of G. triacanthos genomic microsatellites developed using Illumina sequencing techniques in a panel of seven unrelated individuals with 14 of these showing high polymorphism and reproducibility. When characterized in 36 natural population samples, we recorded 20 alleles per locus with no indication for null alleles at 13 of the 14 microsatellites. This is the first report of genomic microsatellites for this species. Honey locust trees occur in fragmented populations of abandoned farmlands and pastures and is described as essentially dioecious. Pollen dispersal if the main source of gene flow within and between populations with the ability to offset the effects of random genetic drift. Factors known to influence gene include fragmentation and degree of isolation, which make the patterns gene flow in fragmented populations of honey locust a necessity for their sustainable management. In this follow-up study, we used a subset of nine of the 14 developed gSSRs to estimate gene flow and identify a full-sib mapping population in two isolated fragments of honey locust. Our analyses indicated that the majority of the seedlings (65-100% - at both strict and relaxed assignment thresholds) were sired by pollen from outside the two fragment populations. Only one selfing event was recorded confirming the functional dioeciousness of honey locust and that the seed parents are almost completely outcrossed. From the Butternut Valley, TN population, pollen donor genotypes were reconstructed and used in paternity assignment analyses to identify a relatively large full-sib family comprised of 149 individuals, proving the usefulness of isolated forest fragments in identification of full-sib families. In the Ames Plantation stand, contemporary pollen dispersal followed a fat-tailed exponential-power distribution, an indication of effective gene flow. Our estimate of δ was 4,282.28 m, suggesting that insect pollinators of honey locust disperse pollen over very long distances. The high proportion of pollen influx into our sampled population implies that our fragment population forms part of a large effectively reproducing population. The high tendency of oak species to hybridize while still maintaining their species identity make it difficult to resolve their taxonomic relationships. Oaks of the section Lobatae are famous in this regard and remain unresolved at both morphological and genetic markers. We applied 28 microsatellite markers including outlier loci with potential roles in reproductive isolation and adaptive divergence between species to natural populations of four known interfertile red oaks, Q. coccinea, Q. ellpsoidalis, Q. rubra and Q. velutina. To better resolve the taxonomic relationships in this difficult clade, we assigned individual samples to species, identified hybrids and introgressive forms and reconstructed phylogenetic relationships among the four species after exclusion of genetically intermediate individuals. Genetic assignment analyses identified four distinct species clusters, with Q. rubra most differentiated from the three other species, but also with a comparatively large number of misclassified individuals (7.14%), hybrids (7.14%) and introgressive forms (18.83%) between Q. ellipsoidalis and Q. velutina. After the exclusion of genetically intermediate individuals, Q. ellipsoidalis grouped as sister species to the largely parapatric Q. coccinea with high bootstrap support (91 %). Genetically intermediate forms in a mixed species stand were located proximate to both potential parental species, which supports recent hybridization of Q. velutina with both Q. ellipsoidalis and Q. rubra. Analyses of genome-wide patterns of interspecific differentiation can provide a better understanding of speciation processes and taxonomic relationships in this taxonomically difficult group of red oak species.
Resumo:
Important food crops like rice are constantly exposed to various stresses that can have devastating effect on their survival and productivity. Being sessile, these highly evolved organisms have developed elaborate molecular machineries to sense a mixture of stress signals and elicit a precise response to minimize the damage. However, recent discoveries revealed that the interplay of these stress regulatory and signaling molecules is highly complex and remains largely unknown. In this work, we conducted large scale analysis of differential gene expression using advanced computational methods to dissect regulation of stress response which is at the heart of all molecular changes leading to the observed phenotypic susceptibility. One of the most important stress conditions in terms of loss of productivity is drought. We performed genomic and proteomic analysis of epigenetic and miRNA mechanisms in regulation of drought responsive genes in rice and found subsets of genes with striking properties. Overexpressed genesets included higher number of epigenetic marks, miRNA targets and transcription factors which regulate drought tolerance. On the other hand, underexpressed genesets were poor in above features but were rich in number of metabolic genes with multiple co-expression partners contributing majorly towards drought resistance. Identification and characterization of the patterns exhibited by differentially expressed genes hold key to uncover the synergistic and antagonistic components of the cross talk between stress response mechanisms. We performed meta-analysis on drought and bacterial stresses in rice and Arabidopsis, and identified hundreds of shared genes. We found high level of conservation of gene expression between these stresses. Weighted co-expression network analysis detected two tight clusters of genes made up of master transcription factors and signaling genes showing strikingly opposite expression status. To comprehensively identify the shared stress responsive genes between multiple abiotic and biotic stresses in rice, we performed meta-analyses of microarray studies from seven different abiotic and six biotic stresses separately and found more than thirteen hundred shared stress responsive genes. Various machine learning techniques utilizing these genes classified the stresses into two major classes' namely abiotic and biotic stresses and multiple classes of individual stresses with high accuracy and identified the top genes showing distinct patterns of expression. Functional enrichment and co-expression network analysis revealed the different roles of plant hormones, transcription factors in conserved and non-conserved genesets in regulation of stress response.