11 resultados para BIODIESEL-FUEL PRODUCTION

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) and 317 kW (425 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within an aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). The tests conducted with the engine rated at 365 hp used a 2007 DOC and CPF. The tests conducted with the engine rated at 425 hp used a 2010 DOC and 2007 CPF. Understanding the passive NO2 oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Modeling the passive oxidation of accumulated PM in the CPF will lead to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine, and when the engine is operated at a higher power rating. A test procedure developed by Hutton et al. [1, 2] was modified to improve the ability to model the experimental data and provide additional insight into passively oxidized PM in a partially regenerated CPF. A test procedure was developed to allow PM oxidation rates by NO2 to be determined from engine test cell data. An experimental matrix consisting of CPF inlet temperatures from 250 to 450 °C with varying NOX/PM from 25 to 583and NO2/PM ratios from 5 to 240 was used. SME biodiesel was volumetrically blended with ULSD in 10% (B10) and 20% (B20) portions. This blended fuel was then used to evaluate the effect of biodiesel on passive oxidation rates. Four tests were performed with B10 and four tests with B20. Gathering data to determine the effect of fuel type (ULSD and biodiesel blends) on PM oxidation is the primary goal. The engine used for this testing was then configured to a higher power rating and one of the tests planned was performed. Additional testing is scheduled to take place with ULSD fuel to determine the affect the engine rating has on the PM oxidation. The experimental reaction rates during passive oxidation varied based upon the average CPF temperature, NO2 concentrations, and the NOX/PM ratios for each engine rating and with all fuels. The data analysis requires a high fidelity model that includes NO2 and thermal oxidation mechanisms and back diffusion to determine the details of the PM oxidation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is no doubt that sufficient energy supply is indispensable for the fulfillment of our fossil fuel crises in a stainable fashion. There have been many attempts in deriving biodiesel fuel from different bioenergy crops including corn, canola, soybean, palm, sugar cane and vegetable oil. However, there are some significant challenges, including depleting feedstock supplies, land use change impacts and food use competition, which lead to high prices and inability to completely displace fossil fuel [1-2]. In recent years, use of microalgae as an alternative biodiesel feedstock has gained renewed interest as these fuels are becoming increasingly economically viable, renewable, and carbon-neutral energy sources. One reason for this renewed interest derives from its promising growth giving it the ability to meet global transport fuel demand constraints with fewer energy supplies without compromising the global food supply. In this study, Chlorella protothecoides microalgae were cultivated under different conditions to produce high-yield biomass with high lipid content which would be converted into biodiesel fuel in tandem with the mitigation of high carbon dioxide concentration. The effects of CO2 using atmospheric and 15% CO2 concentration and light intensity of 35 and 140 µmol m-2s-1 on the microalgae growth and lipid induction were studied. The approach used was to culture microalgal Chlorella protothecoides with inoculation of 1×105 cells/ml in a 250-ml Erlenmeyer flask, irradiated with cool white fluorescent light at ambient temperature. Using these conditions we were able to determine the most suitable operating conditions for cultivating the green microalgae to produce high biomass and lipids. Nile red dye was used as a hydrophobic fluorescent probe to detect the induced intracellular lipids. Also, gas chromatograph mass spectroscopy was used to determine the CO2 concentrations in each culture flask using the closed continuous loop system. The goal was to study how the 15% CO2 concentration was being used up by the microalgae during cultivation. The results show that the condition of high light intensity of 140 µmol m-2s-1 with 15% CO2 concentration obtain high cell concentration of 7 x 105 cells mL-1 after culturing Chlorella protothecoides for 9 to 10 day in both open and closed systems respectively. Higher lipid content was estimated as indicated by fluorescence intensity with 1.3 to 2.5 times CO2 reduction emitted by power plants. The particle size of Chlorella protothecoides increased as well due to induction of lipid accumulation by the cells when culture under these condition (140 µmol m-2s-1 with 15% CO2 concentration).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Biofuels are an increasingly important component of worldwide energy supply. This research aims to understand the pathways and impacts of biofuels production, and to improve these processes to make them more efficient. In Chapter 2, a life cycle assessment (LCA) is presented for cellulosic ethanol production from five potential feedstocks of regional importance to the upper Midwest - hybrid poplar, hybrid willow, switchgrass, diverse prairie grasses, and logging residues - according to the requirements of Renewable Fuel Standard (RFS). Direct land use change emissions are included for the conversion of abandoned agricultural land to feedstock production, and computer models of the conversion process are used in order to determine the effect of varying biomass composition on overall life cycle impacts. All scenarios analyzed here result in greater than 60% reduction in greenhouse gas emissions relative to petroleum gasoline. Land use change effects were found to contribute significantly to the overall emissions for the first 20 years after plantation establishment. Chapter 3 is an investigation of the effects of biomass mixtures on overall sugar recovery from the combined processes of dilute acid pretreatment and enzymatic hydrolysis. Biomass mixtures studied were aspen, a hardwood species well suited to biochemical processing; balsam, a high-lignin softwood species, and switchgrass, an herbaceous energy crop with high ash content. A matrix of three different dilute acid pretreatment severities and three different enzyme loading levels was used to characterize interactions between pretreatment and enzymatic hydrolysis. Maximum glucose yield for any species was 70% oftheoretical for switchgrass, and maximum xylose yield was 99.7% of theoretical for aspen. Supplemental β-glucosidase increased glucose yield from enzymatic hydrolysis by an average of 15%, and total sugar recoveries for mixtures could be predicted to within 4% by linear interpolation of the pure species results. Chapter 4 is an evaluation of the potential for producing Trichoderma reesei cellulose hydrolases in the Kluyveromyces lactis yeast expression system. The exoglucanases Cel6A and Cel7A, and the endoglucanase Cel7B were inserted separately into the K. lactis and the enzymes were analyzed for activity on various substrates. Recombinant Cel7B was found to be active on carboxymethyl cellulose and Avicel powdered cellulose substrates. Recombinant Cel6A was also found to be active on Avicel. Recombinant Cel7A was produced, but no enzymatic activity was detected on any substrate. Chapter 5 presents a new method for enzyme improvement studies using enzyme co-expression and yeast growth rate measurements as a potential high-throughput expression and screening system in K. lactis yeast. Two different K. lactis strains were evaluated for their usefulness in growth screening studies, one wild-type strain and one strain which has had the main galactose metabolic pathway disabled. Sequential transformation and co-expression of the exoglucanase Cel6A and endoglucanase Cel7B was performed, and improved hydrolysis rates on Avicel were detectable in the cell culture supernatant. Future work should focus on hydrolysis of natural substrates, developing the growth screening method, and utilizing the K. lactis expression system for directed evolution of enzymes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Active regeneration experiments were carried out on a production 2007 Cummins 8.9L ISL engine and associated DOC and CPF aftertreatment system. The effects of SME biodiesel blends were investigated in this study in order to determine the PM oxidation kinetics associated with active regeneration, and to determine the effect of biodiesel on them. The experimental data from this study will also be used to calibrate the MTU-1D CPF model. Accurately predicting the PM mass retained in the CPF and the oxidation characteristics will provide the basis for computation in the ECU that will minimize the fuel penalty associated with active regeneration. An active regeneration test procedure was developed based on previous experimentation at MTU. During each experiment, the PM mass in the CPF is determined by weighing the filter at various phases. In addition, DOC and CPF pressure drop, particle size distribution, gaseous emissions, temperature, and PM concentration data are collected and recorded throughout each experiment. The experiments covered a range of CPF inlet temperatures using ULSD, B10, and B20 blends of biodiesel. The majority of the tests were performed at CPF PM loading of 2.2 g/L with in-cylinder dosing, although 4.1 g/L and a post-turbo dosing injector were also used. The PM oxidation characteristics at different test conditions were studied in order to determine the effects of biodiesel on PM oxidation during active regeneration. A PM reaction rate calculation method was developed to determine the global activation energy and the corresponding pre-exponential factor for all test fuels. The changing sum of the total flow resistance of the wall, cake, and channels was also determined as part of the data analysis process in order to check on the integrity of the data and to correct input data to be consistent with the expected trends of the resistance based on the engine conditions used in the test procedure. It was determined that increasing the percent biodiesel content in the test fuel tends to increase the PM reaction rate and the regeneration efficiency of fuel dosing, i.e., at a constant CPF inlet temperature, B20 test fuel resulted in the highest PM reaction rate and regeneration efficiency of fuel dosing. Increasing the CPF inlet temperature also increases PM reaction rate and regeneration efficiency of fuel dosing. Performing active regeneration with B20 as opposed to ULSD allows for a lower CPF temperature to be used to reach the same level of regeneration efficiency, or it allows for a shorter regeneration time at a constant CPF temperature, resulting in decreased fuel consumption for the engine during active regeneration in either scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Algae are considered a promising source of biofuels in the future. However, the environmental impact of algae-based fuel has high variability in previous LCA studies due to lack of accurate data from researchers and industry. The National Alliance for Advanced Biofuels and Bioproducts (NAABB) project was designed to produce and evaluate new technologies that can be implemented by the algal biofuel industry and establish the overall process sustainability. The MTU research group within NAABB worked on the environmental sustainability part of the consortium with UOP-Honeywell and with the University of Arizona (Dr. Paul Blowers). Several life cycle analysis (LCA) models were developed within the GREET Model and SimaPro 7.3 software to quantitatively assess the environment viability and sustainability of algal fuel processes. The baseline GREET Harmonized algae life cycle was expanded and replicated in SimaPro software, important differences in emission factors between GREET/E-Grid database and SimaPro/Ecoinvent database were compared, and adjustments were made to the SimaPro analyses. The results indicated that in most cases SimaPro has a higher emission penalty for inputs of electricity, chemicals, and other materials to the algae biofuels life cycle. A system-wide model of algae life cycle was made starting with preliminary data from the literature, and then progressed to detailed analyses based on inputs from all NAABB research areas, and finally several important scenarios in the algae life cycle were investigated as variations to the baseline scenario. Scenarios include conversion to jet fuel instead of biodiesel or renewable diesel, impacts of infrastructure for algae cultivation, co-product allocation methodology, and different usage of lipid-extracted algae (LEA). The infrastructure impact of algae cultivation is minimal compared to the overall life cycle. However, in the scenarios investigating LEA usage for animal feed instead of internal recycling for energy use and nutrient recovery the results reflect the high potential variability in LCA results. Calculated life cycle GHG values for biofuel production scenarios where LEA is used as animal feed ranged from a 55% reduction to 127% increase compared to the GREET baseline scenario depending on the choice of feed meal. Different allocation methods also affect LCA results significantly. Four novel harvesting technologies and two extraction technologies provided by the NAABB internal report have been analysis using SimaPro LCA software. The results indicated that a combination of acoustic extraction and acoustic harvesting technologies show the most promising result of all combinations to optimize the extraction of algae oil from algae. These scenario evaluations provide important insights for consideration when planning for the future of an algae-based biofuel industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioenergy and biobased products offer new opportunities for strengthening rural economies, enhancing environmental health, and providing a secure energy future. Realizing these benefits will require the development of many different biobased products and biobased production systems. The biomass feedstocks that will enable such development must be sustainable, widely available across many different regions, and compatible with industry requirements. The purpose of this research is to develop an economic model that will help decision makers identify the optimal size of a forest resource based biofuel production facility. The model must be applicable to decision makers anywhere, though the modeled case analysis will focus on a specific region; the Upper Peninsula (U.P.) of Michigan. This work will illustrate that several factors influence the optimal facility size. Further, this effort will reveal that the location of the facility does affect size. The results of the research show that an optimal facility size can be determined for a given location and are based on variables including forest biomass availability, transportation cost rate, and economy of scale factors. These variables acting alone and interacting together can influence the optimal size and the decision of where to locate the biofuel production facility. Further, adjustments to model variables like biomass resource and storage costs have no effect on facility size, but do affect the unit cost of the biofuel produced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In my Ph.D research, a wet chemistry-based organic solution phase reduction method was developed, and was successfully applied in the preparation of a series of advanced electro-catalysts, including 0-dimensional (0-D) Pt, Pd, Au, and Pd-Ni nanoparticles (NPs), 1-D Pt-Fe nanowires (NWs) and 2-D Pd-Fe nanoleaves (NLs), with controlled size, shape, and morphology. These nanostructured catalysts have demonstrated unique electro-catalytic functions towards electricity production and biorenewable alcohol conversion. The molecular oxygen reduction reaction (ORR) is a long-standing scientific issue for fuel cells due to its sluggish kinetics and the poor catalyst durability. The activity and durability of an electro-catalyst is strongly related with its composition and structure. Based on this point, Pt-Fe NWs with a diameter of 2 - 3 nm were accurately prepared. They have demonstrated a high durability in sulfuric acid due to its 1-D structure, as well as a high ORR activity attributed to its tuned electronic structure. By substituting Pt with Pd using a similar synthesis route, Pd-Fe NLs were prepared and demonstrated a higher ORR activity than Pt and Pd NPs catalysts in the alkaline electrolyte. Recently, biomass-derived alcohols have attracted enormous attention as promising fuels (to replace H2) for low-temperature fuel cells. From this point of view, Pd-Ni NPs were prepared and demonstrated a high electro-catalytic activity towards ethanol oxidation. Comparing to ethanol, the biodiesel waste glycerol is more promising due to its low price and high reactivity. Glycerol (and crude glycerol) was successfully applied as the fuel in an Au-anode anion-exchange membrane fuel cell (AEMFC). By replacing Au with a more active Pt catalyst, simultaneous generation of both high power-density electricity and value-added chemicals (glycerate, tartronate, and mesoxalate) from glycerol was achieved in an AEMFC. To investigate the production of valuable chemicals from glycerol electro-oxidation, two anion-exchange membrane electro-catalytic reactors were designed. The research shows that the electro-oxidation product distribution is strongly dependent on the anode applied potential. Reaction pathways for the electro-oxidation of glycerol on Au/C catalyst have been elucidated: continuous oxidation of OH groups (to produce tartronate and mesoxalate) is predominant at lower potentials, while C-C cleavage (to produce glycolate) is the dominant reaction path at higher potentials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dual problems of sustaining the fast growth of human society and preserving the environment for future generations urge us to shift our focus from exploiting fossil oils to researching and developing more affordable, reliable and clean energy sources. Human beings had a long history that depended on meeting our energy demands with plant biomass, and the modern biorefinery technologies realize the effective conversion of biomass to production of transportation fuels, bulk and fine chemicals so to alleviate our reliance on fossil fuel resources of declining supply. With the aim of replacing as much non-renewable carbon from fossil oils with renewable carbon from biomass as possible, innovative R&D activities must strive to enhance the current biorefinery process and secure our energy future. Much of my Ph.D. research effort is centered on the study of electrocatalytic conversion of biomass-derived compounds to produce value-added chemicals, biofuels and electrical energy on model electrocatalysts in AEM/PEM-based continuous flow electrolysis cell and fuel cell reactors. High electricity generation performance was obtained when glycerol or crude glycerol was employed as fuels in AEMFCs. The study on selective electrocatalytic oxidation of glycerol shows an electrode potential-regulated product distribution where tartronate and mesoxalate can be selectively produced with electrode potential switch. This finding then led to the development of AEMFCs with selective production of valuable tartronate or mesoxalate with high selectivity and yield and cogeneration of electricity. Reaction mechanisms of electrocatalytic oxidation of ethylene glycol and 1,2-propanediol were further elucidated by means of an on-line sample collection technique and DFT modeling. Besides electro-oxidation of biorenewable alcohols to chemicals and electricity, electrocatalytic reduction of keto acids (e.g. levulinic acid) was also studied for upgrading biomass-based feedstock to biofuels while achieving renewable electricity storage. Meanwhile, ORR that is often coupled in AEMFCs on the cathode was investigated on non-PGM electrocatalyst with comparable activity to commercial Pt/C. The electro-biorefinery process could be coupled with traditional biorefinery operation and will play a significant role in our energy and chemical landscape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Back-pressure on a diesel engine equipped with an aftertreatment system is a function of the pressure drop across the individual components of the aftertreatment system, typically, a diesel oxidation catalyst (DOC), catalyzed particulate filter (CPF) and selective catalytic reduction (SCR) catalyst. Pressure drop across the CPF is a function of the mass flow rate and the temperature of the exhaust flowing through it as well as the mass of particulate matter (PM) retained in the substrate wall and the cake layer that forms on the substrate wall. Therefore, in order to control the back-pressure on the engine at low levels and to minimize the fuel consumption, it is important to control the PM mass retained in the CPF. Chemical reactions involving the oxidation of PM under passive oxidation and active regeneration conditions can be utilized with computer numerical models in the engine control unit (ECU) to control the pressure drop across the CPF. Hence, understanding and predicting the filtration and oxidation of PM in the CPF and the effect of these processes on the pressure drop across the CPF are necessary for developing control strategies for the aftertreatment system to reduce back-pressure on the engine and in turn fuel consumption particularly from active regeneration. Numerical modeling of CPF's has been proven to reduce development time and the cost of aftertreatment systems used in production as well as to facilitate understanding of the internal processes occurring during different operating conditions that the particulate filter is subjected to. A numerical model of the CPF was developed in this research work which was calibrated to data from passive oxidation and active regeneration experiments in order to determine the kinetic parameters for oxidation of PM and nitrogen oxides along with the model filtration parameters. The research results include the comparison between the model and the experimental data for pressure drop, PM mass retained, filtration efficiencies, CPF outlet gas temperatures and species (NO2) concentrations out of the CPF. Comparisons of PM oxidation reaction rates obtained from the model calibration to the data from the experiments for ULSD, 10 and 20% biodiesel-blended fuels are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hardboard processing wastewater was evaluated as a feedstock in a bio refinery co-located with the hardboard facility for the production of fuel grade ethanol. A thorough characterization was conducted on the wastewater and the composition changes of which during the process in the bio refinery were tracked. It was determined that the wastewater had a low solid content (1.4%), and hemicellulose was the main component in the solid, accounting for up to 70%. Acid pretreatment alone can hydrolyze the majority of the hemicellulose as well as oligomers, and over 50% of the monomer sugars generated were xylose. The percentage of lignin remained in the liquid increased after acid pretreatment. The characterization results showed that hardboard processing wastewater is a feasible feedstock for the production of ethanol. The optimum conditions to hydrolyze hemicellulose into fermentable sugars were evaluated with a two-stage experiment, which includes acid pretreatment and enzymatic hydrolysis. The experimental data were fitted into second order regression models and Response Surface Methodology (RSM) was employed. The results of the experiment showed that for this type of feedstock enzymatic hydrolysis is not that necessary. In order to reach a comparatively high total sugar concentration (over 45g/l) and low furfural concentration (less than 0.5g/l), the optimum conditions were reached when acid concentration was between 1.41 to 1.81%, and reaction time was 48 to 76 minutes. The two products produced from the bio refinery were compared with traditional products, petroleum gasoline and traditional potassium acetate, in the perspective of sustainability, with greenhouse gas (GHG) emission as an indicator. Three allocation methods, system expansion, mass allocation and market value allocation methods were employed in this assessment. It was determined that the life cycle GHG emissions of ethanol were -27.1, 20.8 and 16 g CO2 eq/MJ, respectively, in the three allocation methods, whereas that of petroleum gasoline is 90 g CO2 eq/MJ. The life cycle GHG emissions of potassium acetate in mass allocation and market value allocation method were 555.7 and 716.0 g CO2 eq/kg, whereas that of traditional potassium acetate is 1020 g CO2/kg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The United States of America is making great efforts to transform the renewable and abundant biomass resources into cost-competitive, high-performance biofuels, bioproducts, and biopower. This is the key to increase domestic production of transportation fuels and renewable energy, and reduce greenhouse gas and other pollutant emissions. This dissertation focuses specifically on assessing the life cycle environmental impacts of biofuels and bioenergy produced from renewable feedstocks, such as lignocellulosic biomass, renewable oils and fats. The first part of the dissertation presents the life cycle greenhouse gas (GHG) emissions and energy demands of renewable diesel (RD) and hydroprocessed jet fuels (HRJ). The feedstocks include soybean, camelina, field pennycress, jatropha, algae, tallow and etc. Results show that RD and HRJ produced from these feedstocks reduce GHG emissions by over 50% compared to comparably performing petroleum fuels. Fossil energy requirements are also significantly reduced. The second part of this dissertation discusses the life cycle GHG emissions, energy demands and other environmental aspects of pyrolysis oil as well as pyrolysis oil derived biofuels and bioenergy. The feedstocks include waste materials such as sawmill residues, logging residues, sugarcane bagasse and corn stover, and short rotation forestry feedstocks such as hybrid poplar and willow. These LCA results show that as much as 98% GHG emission savings is possible relative to a petroleum heavy fuel oil. Life cycle GHG savings of 77 to 99% were estimated for power generation from pyrolysis oil combustion relative to fossil fuels combustion for electricity, depending on the biomass feedstock and combustion technologies used. Transportation fuels hydroprocessed from pyrolysis oil show over 60% of GHG reductions compared to petroleum gasoline and diesel. The energy required to produce pyrolysis oil and pyrolysis oil derived biofuels and bioelectricity are mainly from renewable biomass, as opposed to fossil energy. Other environmental benefits include human health, ecosystem quality and fossil resources. The third part of the dissertation addresses the direct land use change (dLUC) impact of forest based biofuels and bioenergy. An intensive harvest of aspen in Michigan is investigated to understand the GHG mitigation with biofuels and bioenergy production. The study shows that the intensive harvest of aspen in MI compared to business as usual (BAU) harvesting can produce 18.5 billion gallons of ethanol to blend with gasoline for the transport sector over the next 250 years, or 32.2 billion gallons of bio-oil by the fast pyrolysis process, which can be combusted to generate electricity or upgraded to gasoline and diesel. Intensive harvesting of these forests can result in carbon loss initially in the aspen forest, but eventually accumulates more carbon in the ecosystem, which translates to a CO2 credit from the dLUC impact. Time required for the forest-based biofuels to reach carbon neutrality is approximately 60 years. The last part of the dissertation describes the use of depolymerization model as a tool to understand the kinetic behavior of hemicellulose hydrolysis under dilute acid conditions. Experiments are carried out to measure the concentrations of xylose and xylooligomers during dilute acid hydrolysis of aspen. The experiment data are used to fine tune the parameters of the depolymerization model. The results show that the depolymerization model successfully predicts the xylose monomer profile in the reaction, however, it overestimates the concentrations of xylooligomers.