2 resultados para Automatic virtual camera control

em Digital Commons - Michigan Tech


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Obesity is becoming an epidemic phenomenon in most developed countries. The fundamental cause of obesity and overweight is an energy imbalance between calories consumed and calories expended. It is essential to monitor everyday food intake for obesity prevention and management. Existing dietary assessment methods usually require manually recording and recall of food types and portions. Accuracy of the results largely relies on many uncertain factors such as user's memory, food knowledge, and portion estimations. As a result, the accuracy is often compromised. Accurate and convenient dietary assessment methods are still blank and needed in both population and research societies. In this thesis, an automatic food intake assessment method using cameras, inertial measurement units (IMUs) on smart phones was developed to help people foster a healthy life style. With this method, users use their smart phones before and after a meal to capture images or videos around the meal. The smart phone will recognize food items and calculate the volume of the food consumed and provide the results to users. The technical objective is to explore the feasibility of image based food recognition and image based volume estimation. This thesis comprises five publications that address four specific goals of this work: (1) to develop a prototype system with existing methods to review the literature methods, find their drawbacks and explore the feasibility to develop novel methods; (2) based on the prototype system, to investigate new food classification methods to improve the recognition accuracy to a field application level; (3) to design indexing methods for large-scale image database to facilitate the development of new food image recognition and retrieval algorithms; (4) to develop novel convenient and accurate food volume estimation methods using only smart phones with cameras and IMUs. A prototype system was implemented to review existing methods. Image feature detector and descriptor were developed and a nearest neighbor classifier were implemented to classify food items. A reedit card marker method was introduced for metric scale 3D reconstruction and volume calculation. To increase recognition accuracy, novel multi-view food recognition algorithms were developed to recognize regular shape food items. To further increase the accuracy and make the algorithm applicable to arbitrary food items, new food features, new classifiers were designed. The efficiency of the algorithm was increased by means of developing novel image indexing method in large-scale image database. Finally, the volume calculation was enhanced through reducing the marker and introducing IMUs. Sensor fusion technique to combine measurements from cameras and IMUs were explored to infer the metric scale of the 3D model as well as reduce noises from these sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exsolution of volatiles from magma maintains an important control on volcanic eruption styles. The nucleation, growth, and connectivity of bubbles during magma ascent provide the driving force behind eruptions, and the rate, volume, and ease of gas exsolution can affect eruptive activity. Volcanic plumes are the observable consequence of this magmatic degassing, and remote sensing techniques allow us to quantify changes in gas exsolution. However, until recently the methods used to measure volcanic plumes did not have the capability of detecting rapid changes in degassing on the scale of standard geophysical observations. The advent of the UV camera now makes high sample rate gas measurements possible. This type of dataset can then be compared to other volcanic observations to provide an in depth picture of degassing mechanisms in the shallow conduit. The goals of this research are to develop a robust methodology for UV camera field measurements of volcanic plumes, and utilize this data in conjunction with seismoacoustic records to illuminate degassing processes. Field and laboratory experiments were conducted to determine the effects of imaging conditions, vignetting, exposure time, calibration technique, and filter usage on the UV camera sulfur dioxide measurements. Using the best practices determined from these studies, a field campaign was undertaken at Volcán de Pacaya, Guatemala. Coincident plume sulfur dioxide measurements, acoustic recordings, and seismic observations were collected and analyzed jointly. The results provide insight into the small explosive features, variations in degassing rate, and plumbing system of this complex volcanic system. This research provides useful information for determining volcanic hazard at Pacaya, and demonstrates the potential of the UV camera in multiparameter studies.