2 resultados para Attribute-based encryption schemes
em Digital Commons - Michigan Tech
Resumo:
Spectrum sensing is currently one of the most challenging design problems in cognitive radio. A robust spectrum sensing technique is important in allowing implementation of a practical dynamic spectrum access in noisy and interference uncertain environments. In addition, it is desired to minimize the sensing time, while meeting the stringent cognitive radio application requirements. To cope with this challenge, cyclic spectrum sensing techniques have been proposed. However, such techniques require very high sampling rates in the wideband regime and thus are costly in hardware implementation and power consumption. In this thesis the concept of compressed sensing is applied to circumvent this problem by utilizing the sparsity of the two-dimensional cyclic spectrum. Compressive sampling is used to reduce the sampling rate and a recovery method is developed for re- constructing the sparse cyclic spectrum from the compressed samples. The reconstruction solution used, exploits the sparsity structure in the two-dimensional cyclic spectrum do-main which is different from conventional compressed sensing techniques for vector-form sparse signals. The entire wideband cyclic spectrum is reconstructed from sub-Nyquist-rate samples for simultaneous detection of multiple signal sources. After the cyclic spectrum recovery two methods are proposed to make spectral occupancy decisions from the recovered cyclic spectrum: a band-by-band multi-cycle detector which works for all modulation schemes, and a fast and simple thresholding method that works for Binary Phase Shift Keying (BPSK) signals only. In addition a method for recovering the power spectrum of stationary signals is developed as a special case. Simulation results demonstrate that the proposed spectrum sensing algorithms can significantly reduce sampling rate without sacrifcing performance. The robustness of the algorithms to the noise uncertainty of the wireless channel is also shown.
Resumo:
Anonymity systems maintain the anonymity of communicating nodes by camouflaging them, either with peer nodes generating dummy traffic or with peer nodes participating in the actual communication process. The probability of any adversary breaking down the anonymity of the communicating nodes is inversely proportional to the number of peer nodes participating in the network. Hence to maintain the anonymity of the communicating nodes, a large number of peer nodes are needed. Lack of peer availability weakens the anonymity of any large scale anonymity system. This work proposes PayOne, an incentive based scheme for promoting peer availability. PayOne aims to increase the peer availability by encouraging nodes to participate in the anonymity system by awarding them with incentives and thereby promoting the anonymity strength. Existing incentive schemes are designed for single path based approaches. There is no incentive scheme for multipath based or epidemic based anonymity systems. This work has been specifically designed for epidemic protocols and has been implemented over MuON, one of the latest entries to the area of multicasting based anonymity systems. MuON is a peer-to-peer based anonymity system which uses epidemic protocol for data dissemination. Existing incentive schemes involve paying every intermediate node that is involved in the communication between the initiator and the receiver. These schemes are not appropriate for epidemic based anonymity systems due to the incurred overhead. PayOne differs from the existing schemes because it involves paying a single intermediate node that participates in the network. The intermediate node can be any random node that participates in the communication and does not necessarily need to lie in the communication path between the initiator and the receiver. The light-weight characteristics of PayOne make it viable for large-scale epidemic based anonymity systems.