3 resultados para Attentional focus

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attentional focus and practice schedules are important components in learning a new skill. For attention this includes focusing inward or outward, for practice this includes interference between tasks. Little is known about how the two interact. Four groups; blocked/extraneous (BE); blocked/skill-focused (BS); random/extraneous (RE); and random/skill-focused (RS), practiced 100 trials of golf putting and 64 trials of a key-pressing task in addition to responding to a random tone distracting attention towards or away from skill movement. Participants performed immediate and delayed retention tests. Results demonstrated the BE group had decreased RTE scores compared to the BS group. Immediate retention demonstrated superior scores for blocked practice. Delayed retention demonstrated superior CEVE scores for extraneous focus. For golf putting, both attention conditions with blocked practice learned faster compared to random groups. Posttest scores demonstrated the random and skill focused group to improve in all putting conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I assessed the influence of the Keweenaw Current and spring thermal bar on the distribution of larval fishes and large zooplankton in Lake Superior. In 1998 and 1999, samples were collected from inshore (0.2 – 3.0 km from shore) and offshore (5.0 – 9.0 km from shore) locations on three transects off the western coast of the Keweenaw Peninsula, Michigan. For larval fishes, density and size distribution patterns of lake herring (Coregonus artedi), rainbow smelt (Osmerus mordax), burbot (Lota lota), deepwater sculpin (Myoxocephalus thompsoni), and spoonhead sculpin (Cottus ricei) suggest a seasonal inshore to offshore movement. For zooplankton, seasonal warming appeared to be the major factor that limited planktonic catches of the primarily benthic Mysisrelicta and Diporeia spp., while simultaneously stimulated growth and reproduction of the cladocerans Daphnia spp., Holopedium gibberum, and Bythotrephes cederstroemi. In contrast, calanoid copepods as a group were abundant throughout the entire sampling season. The greatest abundances of zooplankton were generally encountered offshore, even for the cladocerans, which apparently expanded from inshore to offshore locations with seasonal warming. In 2000, sampling efforts focused on lake herring. Samples were collected from surface waters at 0.1 – 17.0 km from shore on two transects. Lake herring larvae were also reared in the laboratory from eggs in order to validate the use of otolith microstructure for aging. Increment deposition was not statistically different from a daily rate starting from 28 days after hatching, near the time of yolk-sac absorption, but larvae with lower growth rates could not be aged as accurately. In Lake Superior, lake herring tended to be slightly more abundant, larger, and older at inshore locations, but a dense patch of younger larvae was also encountered 7 – 13 km from shore. The distribution iiipatterns suggest that larvae were transported by prevailing currents into the study region, possibly from the more productive spawning regions in western Lake Superior. Growth rates were suppressed at offshore locations where temperatures were less than 8°C. These results indicate that lake herring larvae may be transported far distances from spawning concentrations by longshore currents, and water temperatures may largely control their growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Kenya (a.k.a., Gregory) Rift is a geologically active area located within the eastern branch of the larger East African Rift System (EARS). The study area is located in the southern Kenya Rift between 1° South and the Kenya-Tanzania border (covering approximately 1.5 square degrees, semi-centered on Lake Magadi) and is predominantly filled with extrusive igneous rocks (mostly basalts, phonolites and trachytes) of Miocene age or younger. Sediments are thin, less than 1.5Ma, and are confined to small grabens. The EARS can serve both as an analogue for ancient continental rifting and as a modern laboratory to observe the geologic processes responsible for rifting. This study demonstrates that vintage (as in older, quality maps published by the Kenya Geological Survey, that may be outdated based on newer findings) quarter-degree maps can be successfully combined with recently published data, and used to interpret satellite (mainly Landsat 7) images to produce versatile, updated digital maps. The study area has been remapped using this procedure and although it covers a large area, the mapping retains a quadrangle level of detail. Additionally, all geologic mapping elements (formations, faults, etc.) have been correlated across older map boundaries so that geologic units don't end artificially at degree boundaries within the study area. These elements have also been saved as individual digital files to facilitate future analysis. A series of maps showing the evolution of the southern Kenya rift from the Miocene to the present was created by combining the updated geologic map with age dates for geologic formations and fault displacements. Over 200 age dates covering the entire length of the Kenya Rift have been compiled for this study, and 6 paleo-maps were constructed to demonstrate the evolution of the area, starting with the eruption of the Kishalduga and Lisudwa melanephelinites onto the metamorphic basement around 15Ma. These eruptions occurred before the initial rift faulting and were followed by a massive eruption of phonolites between 13-10 Ma that covered most of the Kenya dome. This was followed by a period of relative quiescence, until the initial faulting defined the western boundary of the rift around 7Ma. The resulting graben was asymmetrical until corresponding faults to the east developed around 3Ma. The rift valley was flooded by basalts and trachytes between 3Ma and 700ka, after which the volcanic activity slowed to a near halt. Since 700ka most of the deposition has been comprised of sediments, mainly from lakes occupying the various basins in the area. The main results of this study are, in addition to a detailed interpretation of the rift development, a new geologic map that correlates dozens of formations across old map boundaries and a compilation of over 300 age dates. Specific products include paleomaps, tables of fault timing and displacement, and volume estimates of volcanic formations. The study concludes with a generalization of the present environment at Magadi including discussions of lagoon chemistry, mantle gases in relation to the trona deposit, and biology of the hot springs. Several biologic samples were collected during the 2006 field season in an attempt to characterize the organisms that are commonly seen in the present Lake Magadi environment. Samples were selected to represent the different, distinctive forms that are found in the hotsprings. Each sample had it own distinctive growth habit, and analysis showed that each was formed by a different cyanobacterial. Actual algae was rare in the collected samples, and represented by a few scattered diatoms.