2 resultados para Associated management

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate seasonal to interannual streamflow forecasts based on climate information are critical for optimal management and operation of water resources systems. Considering most water supply systems are multipurpose, operating these systems to meet increasing demand under the growing stresses of climate variability and climate change, population and economic growth, and environmental concerns could be very challenging. This study was to investigate improvement in water resources systems management through the use of seasonal climate forecasts. Hydrological persistence (streamflow and precipitation) and large-scale recurrent oceanic-atmospheric patterns such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the Pacific North American (PNA), and customized sea surface temperature (SST) indices were investigated for their potential to improve streamflow forecast accuracy and increase forecast lead-time in a river basin in central Texas. First, an ordinal polytomous logistic regression approach is proposed as a means of incorporating multiple predictor variables into a probabilistic forecast model. Forecast performance is assessed through a cross-validation procedure, using distributions-oriented metrics, and implications for decision making are discussed. Results indicate that, of the predictors evaluated, only hydrologic persistence and Pacific Ocean sea surface temperature patterns associated with ENSO and PDO provide forecasts which are statistically better than climatology. Secondly, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river-reservoir systems. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas. Lastly, a simplified two-stage stochastic economic-optimization model was proposed to investigate improvement in water use efficiency and the potential value of using seasonal forecasts, under the assumption of optimal decision making under uncertainty. Model results demonstrate that incorporating the probabilistic inflow forecasts into the optimization model can provide a significant improvement in seasonal water contract benefits over climatology, with lower average deficits (increased reliability) for a given average contract amount, or improved mean contract benefits for a given level of reliability compared to climatology. The results also illustrate the trade-off between the expected contract amount and reliability, i.e., larger contracts can be signed at greater risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasive plant species threaten natural areas by reducing biodiversity and altering ecosystem functions. They also impact agriculture by reducing crop and livestock productivity. Millions of dollars are spent on invasive species control each year, and traditionally, herbicides are used to manage invasive species. Herbicides have human and environmental health risks associated with them; therefore, it is essential that land managers and stakeholders attempt to reduce these risks by utilizing the principles of integrated weed management. Integrated weed management is a practice that incorporates a variety of measures and focuses on the ecology of the invasive plant to manage it. Roadways are high risk areas that have high incidence of invasive species. Roadways act as conduits for invasive species spread and are ideal harborages for population growth; therefore, roadways should be a primary target for invasive species control. There are four stages in the invasion process which an invasive species must overcome: transport, establishment, spread, and impact. The aim of this dissertation was to focus on these four stages and examine the mechanisms underlying the progression from one stage to the next, while also developing integrated weed management strategies. The target species were Phragmites australis, common reed, and Cisrium arvense, Canada thistle. The transport and establishment risks of P. australis can be reduced by removing rhizome fragments from soil when roadside maintenance is performed. The establishment and spread of C. arvense can be reduced by planting particular resistant species, e.g. Heterotheca villosa, especially those that can reduce light transmittance to the soil. Finally, the spread and impact of C. arvense can be mitigated on roadsides through the use of the herbicide aminopyralid. The risks associated with herbicide drift produced by application equipment can be reduced by using the Wet-Blade herbicide application system.