3 resultados para Appropriate Partition
em Digital Commons - Michigan Tech
Resumo:
High concentrations of fluoride naturally occurring in the ground water in the Arusha region of Tanzania cause dental, skeletal and non-skeletal fluorosis in up to 90% of the region’s population [1]. Symptoms of this incurable but completely preventable disease include brittle, discolored teeth, malformed bones and stiff and swollen joints. The consumption of high fluoride water has also been proven to cause headaches and insomnia [2] and adversely affect the development of children’s intelligence [3, 4]. Despite the fact that this array of symptoms may significantly impact a society’s development and the citizens’ ability to perform work and enjoy a reasonable quality of life, little is offered in the Arusha region in the form of solutions for the poor, those hardest hit by the problem. Multiple defluoridation technologies do exist, yet none are successfully reaching the Tanzanian public. This report takes a closer look at the efforts of one local organization, the Defluoridation Technology Project (DTP), to address the region’s fluorosis problem through the production and dissemination of bone char defluoridation filters, an appropriate technology solution that is proven to work. The goal of this research is to improve the sustainability of DTP’s operations and help them reach a wider range of clients so that they may reduce the occurrence of fluorosis more effectively. This was done first through laboratory testing of current products. Results of this testing show a wide range in uptake capacity across batches of bone char emphasizing the need to modify kiln design in order to produce a more consistent and high quality product. The issue of filter dissemination was addressed through the development of a multi-level, customerfunded business model promoting the availability of filters to Tanzanians of all socioeconomic levels. Central to this model is the recommendation to focus on community managed, institutional sized filters in order to make fluoride free water available to lower income clients and to increase Tanzanian involvement at the management level.
Resumo:
Fuzzy community detection is to identify fuzzy communities in a network, which are groups of vertices in the network such that the membership of a vertex in one community is in [0,1] and that the sum of memberships of vertices in all communities equals to 1. Fuzzy communities are pervasive in social networks, but only a few works have been done for fuzzy community detection. Recently, a one-step forward extension of Newman’s Modularity, the most popular quality function for disjoint community detection, results into the Generalized Modularity (GM) that demonstrates good performance in finding well-known fuzzy communities. Thus, GMis chosen as the quality function in our research. We first propose a generalized fuzzy t-norm modularity to investigate the effect of different fuzzy intersection operators on fuzzy community detection, since the introduction of a fuzzy intersection operation is made feasible by GM. The experimental results show that the Yager operator with a proper parameter value performs better than the product operator in revealing community structure. Then, we focus on how to find optimal fuzzy communities in a network by directly maximizing GM, which we call it Fuzzy Modularity Maximization (FMM) problem. The effort on FMM problem results into the major contribution of this thesis, an efficient and effective GM-based fuzzy community detection method that could automatically discover a fuzzy partition of a network when it is appropriate, which is much better than fuzzy partitions found by existing fuzzy community detection methods, and a crisp partition of a network when appropriate, which is competitive with partitions resulted from the best disjoint community detections up to now. We address FMM problem by iteratively solving a sub-problem called One-Step Modularity Maximization (OSMM). We present two approaches for solving this iterative procedure: a tree-based global optimizer called Find Best Leaf Node (FBLN) and a heuristic-based local optimizer. The OSMM problem is based on a simplified quadratic knapsack problem that can be solved in linear time; thus, a solution of OSMM can be found in linear time. Since the OSMM algorithm is called within FBLN recursively and the structure of the search tree is non-deterministic, we can see that the FMM/FBLN algorithm runs in a time complexity of at least O (n2). So, we also propose several highly efficient and very effective heuristic algorithms namely FMM/H algorithms. We compared our proposed FMM/H algorithms with two state-of-the-art community detection methods, modified MULTICUT Spectral Fuzzy c-Means (MSFCM) and Genetic Algorithm with a Local Search strategy (GALS), on 10 real-world data sets. The experimental results suggest that the H2 variant of FMM/H is the best performing version. The H2 algorithm is very competitive with GALS in producing maximum modularity partitions and performs much better than MSFCM. On all the 10 data sets, H2 is also 2-3 orders of magnitude faster than GALS. Furthermore, by adopting a simply modified version of the H2 algorithm as a mutation operator, we designed a genetic algorithm for fuzzy community detection, namely GAFCD, where elite selection and early termination are applied. The crossover operator is designed to make GAFCD converge fast and to enhance GAFCD’s ability of jumping out of local minimums. Experimental results on all the data sets show that GAFCD uncovers better community structure than GALS.
Resumo:
Previous work has shown that high-temperature short-term spike thermal annealing of hydrogenated amorphous silicon (a-Si:H) photovoltaic thermal (PVT) systems results in higher electrical energy output. The relationship between temperature and performance of a-Si:H PVT is not simple as high temperatures during thermal annealing improves the immediate electrical performance following an anneal, but during the anneal it creates a marked drop in electrical performance. In addition, the power generation of a-Si:H PVT depends on both the environmental conditions and the Staebler-Wronski Effect kinetics. In order to improve the performance of a-Si:H PVT systems further, this paper reports on the effect of various dispatch strategies on system electrical performance. Utilizing experimental results from thermal annealing, an annealing model simulation for a-Si:Hbased PVT was developed and applied to different cities in the U.S. to investigate potential geographic effects on the dispatch optimization of the overall electrical PVT systems performance and annual electrical yield. The results showed that spike thermal annealing once per day maximized the improved electrical energy generation. In the outdoor operating condition this ideal behavior deteriorates and optimization rules are required to be implemented.