7 resultados para Anoxia and normoxia and Storage mobilization

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon dioxide (CO2) capture and storage experiments were conducted at ambient conditions in varying weight % sodium carbonate (Na2CO3) solutions. Experiments were conducted to determine the optimal amount of Na2CO3 in solution for CO2 absorption. It was concluded that a 2% Na2CO3 solution, by weight, was the most efficient solution. The 2% Na2CO3 solution is able to absorb 0.5 g CO2/g Na2CO3. These results led to studies to determine how the gas bubble size affected carbon dioxide absorption in the solution. Studies were conducted using ASTM porosity gas diffusers to vary the bubble size. Gas diffusers with porosities of fine, medium, and extra coarse were used. Results found that the medium porosity gas diffuser was the most efficient at absorbing CO2 at 50%. Variation in the bubble size concluded that absorption of carbon dioxide into the sodium carbonate solution does depend on the bubble size, thus is mass transfer limited. Once the capture stage was optimized (amount of Na2CO3 in solution and bubble size), the next step was to determine if carbon dioxide could be stored as a calcium carbonate mineral using calcium rich industrial waste and if the sodium carbonate solution could be simultaneously regenerated. Studies of CO2 sequestration at ambient conditions have shown that it is possible to permanently sequester CO2 in the form of calcium carbonate using a calcium rich industrial waste. Studies have also shown that it is possible to regenerate a fraction of the sodium carbonate solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The novel approach to carbon capture and storage (CCS) described in this dissertation is a significant departure from the conventional approach to CCS. The novel approach uses a sodium carbonate solution to first capture CO2 from post combustion flue gas streams. The captured CO2 is then reacted with an alkaline industrial waste material, at ambient conditions, to regenerate the carbonate solution and permanently store the CO2 in the form of an added value carbonate mineral. Conventional CCS makes use of a hazardous amine solution for CO2 capture, a costly thermal regeneration stage, and the underground storage of supercritical CO2. The objective of the present dissertation was to examine each individual stage (capture and storage) of the proposed approach to CCS. Study of the capture stage found that a 2% w/w sodium carbonate solution was optimal for CO2 absorption in the present system. The 2% solution yielded the best tradeoff between the CO2 absorption rate and the CO2 absorption capacity of the solutions tested. Examination of CO2 absorption in the presence of flue gas impurities (NOx and SOx) found that carbonate solutions possess a significant advantage over amine solutions, that they could be used for multi-pollutant capture. All the NOx and SOx fed to the carbonate solution was able to be captured. Optimization studies found that it was possible to increase the absorption rate of CO2 into the carbonate solution by adding a surfactant to the solution to chemically alter the gas bubble size. The absorption rate of CO2 was increased by as much as 14%. Three coal combustion fly ash materials were chosen as the alkaline industrial waste materials to study the storage CO2 and regeneration the absorbent. X-ray diffraction analysis on reacted fly ash samples confirmed that the captured CO2 reacts with the fly ash materials to form a carbonate mineral, specifically calcite. Studies found that after a five day reaction time, 75% utilization of the waste material for CO2 storage could be achieved, while regenerating the absorbent. The regenerated absorbent exhibited a nearly identical CO2 absorption capacity and CO2 absorption rate as a fresh Na2CO3 solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Demand for bio-fuels is expected to increase, due to rising prices of fossil fuels and concerns over greenhouse gas emissions and energy security. The overall cost of biomass energy generation is primarily related to biomass harvesting activity, transportation, and storage. With a commercial-scale cellulosic ethanol processing facility in Kinross Township of Chippewa County, Michigan about to be built, models including a simulation model and an optimization model have been developed to provide decision support for the facility. Both models track cost, emissions and energy consumption. While the optimization model provides guidance for a long-term strategic plan, the simulation model aims to present detailed output for specified operational scenarios over an annual period. Most importantly, the simulation model considers the uncertainty of spring break-up timing, i.e., seasonal road restrictions. Spring break-up timing is important because it will impact the feasibility of harvesting activity and the time duration of transportation restrictions, which significantly changes the availability of feedstock for the processing facility. This thesis focuses on the statistical model of spring break-up used in the simulation model. Spring break-up timing depends on various factors, including temperature, road conditions and soil type, as well as individual decision making processes at the county level. The spring break-up model, based on the historical spring break-up data from 27 counties over the period of 2002-2010, starts by specifying the probability distribution of a particular county’s spring break-up start day and end day, and then relates the spring break-up timing of the other counties in the harvesting zone to the first county. In order to estimate the dependence relationship between counties, regression analyses, including standard linear regression and reduced major axis regression, are conducted. Using realizations (scenarios) of spring break-up generated by the statistical spring breakup model, the simulation model is able to probabilistically evaluate different harvesting and transportation plans to help the bio-fuel facility select the most effective strategy. For early spring break-up, which usually indicates a longer than average break-up period, more log storage is required, total cost increases, and the probability of plant closure increases. The risk of plant closure may be partially offset through increased use of rail transportation, which is not subject to spring break-up restrictions. However, rail availability and rail yard storage may then become limiting factors in the supply chain. Rail use will impact total cost, energy consumption, system-wide CO2 emissions, and the reliability of providing feedstock to the bio-fuel processing facility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To mitigate greenhouse gas (GHG) emissions and reduce U.S. dependence on imported oil, the United States (U.S.) is pursuing several options to create biofuels from renewable woody biomass (hereafter referred to as “biomass”). Because of the distributed nature of biomass feedstock, the cost and complexity of biomass recovery operations has significant challenges that hinder increased biomass utilization for energy production. To facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization and tapping unused forest residues, it is proposed to develop biofuel supply chain models based on optimization and simulation approaches. The biofuel supply chain is structured around four components: biofuel facility locations and sizes, biomass harvesting/forwarding, transportation, and storage. A Geographic Information System (GIS) based approach is proposed as a first step for selecting potential facility locations for biofuel production from forest biomass based on a set of evaluation criteria, such as accessibility to biomass, railway/road transportation network, water body and workforce. The development of optimization and simulation models is also proposed. The results of the models will be used to determine (1) the number, location, and size of the biofuel facilities, and (2) the amounts of biomass to be transported between the harvesting areas and the biofuel facilities over a 20-year timeframe. The multi-criteria objective is to minimize the weighted sum of the delivered feedstock cost, energy consumption, and GHG emissions simultaneously. Finally, a series of sensitivity analyses will be conducted to identify the sensitivity of the decisions, such as the optimal site selected for the biofuel facility, to changes in influential parameters, such as biomass availability and transportation fuel price. Intellectual Merit The proposed research will facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization in the renewable biofuel industry. The GIS-based facility location analysis considers a series of factors which have not been considered simultaneously in previous research. Location analysis is critical to the financial success of producing biofuel. The modeling of woody biomass supply chains using both optimization and simulation, combing with the GIS-based approach as a precursor, have not been done to date. The optimization and simulation models can help to ensure the economic and environmental viability and sustainability of the entire biofuel supply chain at both the strategic design level and the operational planning level. Broader Impacts The proposed models for biorefineries can be applied to other types of manufacturing or processing operations using biomass. This is because the biomass feedstock supply chain is similar, if not the same, for biorefineries, biomass fired or co-fired power plants, or torrefaction/pelletization operations. Additionally, the research results of this research will continue to be disseminated internationally through publications in journals, such as Biomass and Bioenergy, and Renewable Energy, and presentations at conferences, such as the 2011 Industrial Engineering Research Conference. For example, part of the research work related to biofuel facility identification has been published: Zhang, Johnson and Sutherland [2011] (see Appendix A). There will also be opportunities for the Michigan Tech campus community to learn about the research through the Sustainable Future Institute.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are interesting materials with extraordinary properties for various applications. Here, vertically-aligned multiwalled CNTs (VA-MWCNTs) are grown by our dual radio frequency plasma enhanced chemical vapor deposition (PECVD). After optimizing the synthesis processes, these VA-MWCNTs were fabricated in to a series of devices for applications in vacuum electronics, glucose biosensors, glucose biofuel cells, and supercapacitors In particular, we have created the so-called PMMA-CNT matrices (opened-tip CNTs embedded in poly-methyl methacrylate) that are promising components in a novel energy sensing, generation and storage (SGS) system that integrate glucose biosensors, biofuel cells, and supercapacitors. The content of this thesis work is described as follows: 1. We have first optimized the synthesis of VA-MWCNTs by our PECVD technique. The effects of CH4 flow rate and growth duration on the lengths of these CNTs were studied. 2. We have characterized these VA-MWCNTs for electron field emission. We noticed that as grown CNTs suffers from high emission threshold, poor emission density and poor long-term stability. We attempted a series of experiments to understand ways to overcome these problems. First, we decrease the screening effects on VA-MWCNTs by creating arrays of self-assembled CNT bundles that are catalyst-free and opened tips. These bundles are found to enhance the field emission stability and emission density. Subsequently, we have created PMMA-CNT matrices that are excellent electron field emitters with an emission threshold field of more than two-fold lower than that of the as-grown sample. Furthermore, no significant emission degradation was observed after a continuous emission test of 40 hours (versus much shorter tests in reported literatures). Based on the new understanding we learnt from the PMMA-CNT matrices, we further created PMMA-STO-CNT matrices by embedding opened-tip VA-MWCNTs that are coated with strontium titanate (SrTiO3) with PMMA. We found that the PMMA-STO-CNT matrices have all the desired properties of the PMMA-CNT matrices. Furthermore, PMMA-STO-CNT matrices offer much lower emission threshold field, about five-fold lower than that of as grown VA-MWCNTs. The new understandings we obtained are important for practical application of VA-MWCNTs in field emission devices. 3. Subsequently, we have functionalized PMMA-CNT matrices for glucose biosensing. Our biosensor was developed by immobilized glucose oxidase (GOχ) on the opened-tip CNTs exposed on the matrices. The durability, stability and sensitivity of the biosensor were studied. In order to understand the performance of miniaturized glucose biosensors, we have then investigated the effect of working electrode area on the sensitivity and current level of our biosensors. 4. Next, functionalized PMMA-CNT matrices were utilized for energy generation and storage. We found that PMMA-CNT matrices are promising component in glucose/O2 biofuel cells (BFCs) for energy generation. The construction of these BFCs and the effect of the electrode area on the power density of these BFCs were investigated. Then, we have attempted to use PMMA-CNT matrices as supercapacitors for energy storage devices. The performance of these supercapacitors and ways to enhance their performance are discussed. 5. Finally, we further evaluated the concept of energy SGS system that integrated glucose biosensors, biofuel cells, and supercapacitors. This SGS system may be implantable to monitor and control the blood glucose level in our body.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renewable hydrocarbon biofuels are being investigated as possible alternatives to conventional liquid transportation fossil fuels like gasoline, kerosene (aviation fuel), and diesel. A diverse range of biomass feedstocks such as corn stover, sugarcane bagasse, switchgrass, waste wood, and algae, are being evaluated as candidates for pyrolysis and catalytic upgrading to produce drop-in hydrocarbon fuels. This research has developed preliminary life cycle assessments (LCA) for each feedstock-specific pathway and compared the greenhouse gas (GHG) emissions of the hydrocarbon biofuels to current fossil fuels. As a comprehensive study, this analysis attempts to account for all of the GHG emissions associated with each feedstock pathway through the entire life cycle. Emissions from all stages including feedstock production, land use change, pyrolysis, stabilizing the pyrolysis oil for transport and storage, and upgrading the stabilized pyrolysis oil to a hydrocarbon fuel are included. In addition to GHG emissions, the energy requirements and water use have been evaluated over the entire life cycle. The goal of this research is to help understand the relative advantages and disadvantages of the feedstocks and the resultant hydrocarbon biofuels based on three environmental indicators; GHG emissions, energy demand, and water utilization. Results indicate that liquid hydrocarbon biofuels produced through this pyrolysis-based pathway can achieve greenhouse gas emission savings of greater than 50% compared to petroleum fuels, thus potentially qualifying these biofuels under the US EPA RFS2 program. GHG emissions from biofuels ranged from 10.7-74.3 g/MJ from biofuels derived from sugarcane bagasse and wild algae at the extremes of this range, respectively. The cumulative energy demand (CED) shows that energy in every biofuel process is primarily from renewable biomass and the remaining energy demand is mostly from fossil fuels. The CED for biofuel range from 1.25-3.25 MJ/MJ from biofuels derived from sugarcane bagasse to wild algae respectively, while the other feedstock-derived biofuels are around 2 MJ/MJ. Water utilization is primarily from cooling water use during the pyrolysis stage if irrigation is not used during the feedstock production stage. Water use ranges from 1.7 - 17.2 gallons of water per kg of biofuel from sugarcane bagasse to open pond algae, respectively.