1 resultado para Amount h-b CH4
em Digital Commons - Michigan Tech
Resumo:
The addition of heavy rare earth (RE) elements to Nd2Fe14B based magnets to form (Nd,Dy)2Fe14B is known to increase the coercivity and high temperature performance required for hybrid vehicle electric motors and other extreme temperature applications. Attempts to conserve heavy rare earth elements for high temperature (RE)2Fe14B based magnets have led to the development of a grain boundary diffusion process for bulk magnets. This process relies on transport of a heavy rare earth, such as Dy, into a bulk Nd2Fe14B magnet along pores, a low volume fraction of eutectic liquid along grain boundary grain triple junctions and grain boundaries. This enriches the grain surfaces in Dy through the thickness of the bulk magnet, leading to larger increases coercivity with a smaller Dy concentration than can be achieved with homogeneous alloys. Attempts to carry out the same process during sintering require significant control of Dy transport efficiency. The macroscopic transport of Dy in Nd2.7Fe14B1.4 based powder packs is studied using a 'layered' pellet, where Nd2.7Fe14B1.4powder is an interlayer and Dy source as a center layer. The sintering of this layered pellet provided evidence for very large effective diffusion lengths aided by Dy rich liquid flow through connected porosity. Approaches to controlling Dy transportation include decreasing the liquid phase transport capability of the powder pack by increasing the melting point of the Dy source and the decreasing amount of RE rich liquid in the powder packs. The solid-liquid reaction is studied in which melt spun Nd2.7Fe14B1.4 ribbons are PVD coated with Dy-Fe eutectic composition and then thermally treated. The resulting microstructure from the reaction between Dy-Fe eutectic coating and Nd2.7Fe14B1.4 ribbon is interpreted as support for a proposed dissolution/reprecipitation process between solid and liquid phases. The estimate the diffusion coefficient and the effective diffusion length of Dy sources in Nd2.7Fe14B1.4 layered pellets and melt spun ribbons were obtained from the calculation of Fick's second law combined with EDS results from the experiment. The results indicate that the effective diffusion coefficient of Dy in the layered pellets is higher than the diffusion in ribbons due to its higher porosity than ribbons.