2 resultados para Ammonium toxicity
em Digital Commons - Michigan Tech
Resumo:
Surfactants find large applications in detergents, paints, coatings, food and pharmaceutical industries. Other than that, much focused work has been carried out in oil recovery in petroleum industries and raw material extraction in mining industries. This is because of their unique structure and ability to simultaneously adhere to materials which are both structurally and physically different. The current thesis focuses on interactions of oil with different commercially available and laboratory synthesized surfactants in terms of characteristics such as foaming, ultrasound exposure and toxicity. Foaming is one important characteristic of surfactants that is widely utilized for oil recovery purposes. Researchers utilize surfactants' special ability to provide foam stability to for more efficient oil herding capability. The foam stability and foam volumes are calculated using static foam height tests. Further dispersion or oil in water emulsion formation is observed using ultrasound sources. As described earlier surfactants are not only used as foams for oil displacement, but they are also used for dispersion purposes where they are key components of dispersant formulations. During such operations, especially in sea conditions where adverse effects on aquatic life are a concern, toxicity of chemicals used becomes an important factor. Our toxicity testing experiments involves different surfactants, solvents and crude oil combinations through exposure to special light luminescent bacteria. The decrease in light intensity of the exposed bacteria is related to toxic effects of the samples.
Resumo:
The aqueous phase processing of glyoxylic acid, pyruvic acid, oxalic acid and methylglyoxal was studied simulating dark and radical free atmospheric aqueous aerosol. A novel observation of the cleavage of a carbon-carbon bond in pyruvic acid and glyoxylic acid leading to their decarboxylation was made in the presence of ammonium salts but no decarboxylation was observed from oxalic acid. The empirical rate constants for decarboxylation were determined. The structure of the acid, ionic environment of solution and concentration of species found to affect the decarboxylation process. A tentative set of reaction mechanisms was proposed involving nucleophilic attack by ammonia on the carbonyl carbon leading to fragmentation of the carbon-carbon bond between the carbonyl and carboxyl carbons. Whereas, the formation of high molecular weight organic species was observed in the case of methylglyoxal. The elemental compositions of the species were determined. It was concluded that, additional pathways that are not currently known likely contribute to aqueous phase processing leading to high molecular weight organic species. Under similar conditions in atmospheric aerosol, the aqueous phase processing will markedly impact the physicochemical properties of aerosol.