1 resultado para Allometric equation
em Digital Commons - Michigan Tech
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Aquatic Commons (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (35)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (19)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (13)
- Boston University Digital Common (1)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (47)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (49)
- CentAUR: Central Archive University of Reading - UK (72)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (89)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (5)
- DigitalCommons@The Texas Medical Center (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (3)
- Indian Institute of Science - Bangalore - Índia (84)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (4)
- National Center for Biotechnology Information - NCBI (6)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Publishing Network for Geoscientific & Environmental Data (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (36)
- Queensland University of Technology - ePrints Archive (139)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (172)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (20)
- Universidade Complutense de Madrid (3)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (6)
- University of Michigan (26)
- University of Queensland eSpace - Australia (28)
Resumo:
To estimate a parameter in an elliptic boundary value problem, the method of equation error chooses the value that minimizes the error in the PDE and boundary condition (the solution of the BVP having been replaced by a measurement). The estimated parameter converges to the exact value as the measured data converge to the exact value, provided Tikhonov regularization is used to control the instability inherent in the problem. The error in the estimated solution can be bounded in an appropriate quotient norm; estimates can be derived for both the underlying (infinite-dimensional) problem and a finite-element discretization that can be implemented in a practical algorithm. Numerical experiments demonstrate the efficacy and limitations of the method.