2 resultados para Alcohol Control Measures
em Digital Commons - Michigan Tech
Resumo:
Invasive plant species threaten natural areas by reducing biodiversity and altering ecosystem functions. They also impact agriculture by reducing crop and livestock productivity. Millions of dollars are spent on invasive species control each year, and traditionally, herbicides are used to manage invasive species. Herbicides have human and environmental health risks associated with them; therefore, it is essential that land managers and stakeholders attempt to reduce these risks by utilizing the principles of integrated weed management. Integrated weed management is a practice that incorporates a variety of measures and focuses on the ecology of the invasive plant to manage it. Roadways are high risk areas that have high incidence of invasive species. Roadways act as conduits for invasive species spread and are ideal harborages for population growth; therefore, roadways should be a primary target for invasive species control. There are four stages in the invasion process which an invasive species must overcome: transport, establishment, spread, and impact. The aim of this dissertation was to focus on these four stages and examine the mechanisms underlying the progression from one stage to the next, while also developing integrated weed management strategies. The target species were Phragmites australis, common reed, and Cisrium arvense, Canada thistle. The transport and establishment risks of P. australis can be reduced by removing rhizome fragments from soil when roadside maintenance is performed. The establishment and spread of C. arvense can be reduced by planting particular resistant species, e.g. Heterotheca villosa, especially those that can reduce light transmittance to the soil. Finally, the spread and impact of C. arvense can be mitigated on roadsides through the use of the herbicide aminopyralid. The risks associated with herbicide drift produced by application equipment can be reduced by using the Wet-Blade herbicide application system.
Resumo:
The U.S. Renewable Fuel Standard mandates that by 2022, 36 billion gallons of renewable fuels must be produced on a yearly basis. Ethanol production is capped at 15 billion gallons, meaning 21 billion gallons must come from different alternative fuel sources. A viable alternative to reach the remainder of this mandate is iso-butanol. Unlike ethanol, iso-butanol does not phase separate when mixed with water, meaning it can be transported using traditional pipeline methods. Iso-butanol also has a lower oxygen content by mass, meaning it can displace more petroleum while maintaining the same oxygen concentration in the fuel blend. This research focused on studying the effects of low level alcohol fuels on marine engine emissions to assess the possibility of using iso-butanol as a replacement for ethanol. Three marine engines were used in this study, representing a wide range of what is currently in service in the United States. Two four-stroke engine and one two-stroke engine powered boats were tested in the tributaries of the Chesapeake Bay, near Annapolis, Maryland over the course of two rounds of weeklong testing in May and September. The engines were tested using a standard test cycle and emissions were sampled using constant volume sampling techniques. Specific emissions for two-stroke and four-stroke engines were compared to the baseline indolene tests. Because of the nature of the field testing, limited engine parameters were recorded. Therefore, the engine parameters analyzed aside from emissions were the operating relative air-to-fuel ratio and engine speed. Emissions trends from the baseline test to each alcohol fuel for the four-stroke engines were consistent, when analyzing a single round of testing. The same trends were not consistent when comparing separate rounds because of uncontrolled weather conditions and because the four-stroke engines operate without fuel control feedback during full load conditions. Emissions trends from the baseline test to each alcohol fuel for the two-stroke engine were consistent for all rounds of testing. This is due to the fact the engine operates open-loop, and does not provide fueling compensation when fuel composition changes. Changes in emissions with respect to the baseline for iso-butanol were consistent with changes for ethanol. It was determined iso-butanol would make a viable replacement for ethanol.