5 resultados para Akvan94-1003

em Digital Commons - Michigan Tech


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrochemical capacitors (ECs), also known as supercapacitors or ultracapacitors, are energy storage devices with properties between batteries and conventional capacitors. EC have evolved through several generations. The trend in EC is to combine a double-layer electrode with a battery-type electrode in an asymmetric capacitor configuration. The double-layer electrode is usually an activated carbon (AC) since it has high surface area, good conductivity, and relatively low cost. The battery-type electrode usually consists of PbO2 or Ni(OH)2. In this research, a graphitic carbon foam was impregnated with Co-substituted Ni(OH)2 using electrochemical deposition to serve as the positive electrode in the asymmetric capacitor. The purpose was to reduce the cost and weight of the ECs while maintaining or increasing capacitance and gravimetric energy storage density. The XRD result indicated that the nickel-carbon foam electrode was a typical α-Ni(OH)2. The specific capacitance of the nickel-carbon foam electrode was 2641 F/g at 5 mA/cm2, higher than the previously reported value of 2080 F/g for a 7.5% Al-substituted α-Ni(OH)2 electrode. Three different ACs (RP-20, YP-50F, and Ketjenblack EC-600JD) were evaluated through their morphology and electrochemical performance to determine their suitability for use in ECs. The study indicated that YP-50F demonstrated the better overall performance because of the combination of micropore and mesopore structures. Therefore, YP-50F was chosen to combine with the nickel-carbon foam electrode for further evaluation. Six cells with different mass ratios of negative to positive active mass were fabricated to study the electrochemical performance. Among the different mass ratios, the asymmetric capacitor with the mass ratio of 3.71 gave the highest specific energy and specific power, 24.5 W.h/kg and 498 W/kg, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polylactide (PLA) is a biodegradable polymer that has been used in particle form for drug release, due to its biocompatibility, tailorable degradation kinetics, and desirable mechanical properties. Active pharmaceutical ingredients (APIs) may be either dissolved or encapsulated within these biomaterials to create micro- or nanoparticles. Delivery of an AIP within fine particles may overcome solubility or stability issues that can result in early elimination or degradation of the AIP in a hostile biological environment. Furthermore, it is a promising method for controlling the rate of drug delivery and dosage. The goal of this project is to develop a simple and cost-effective device that allows us to produce monodisperse micro- and nanocapsules with controllable size and adjustable sheath thickness on demand. To achieve this goal, we have studied the dual-capillary electrospray and pulsed electrospray. Dual-capillary electrospray has received considerable attention in recent years due to its ability to create core-shell structures in a single-step. However, it also increases the difficulty of controlling the inner and outer particle morphology, since two simultaneous flows are required. Conventional electrospraying has been mainly conducted using direct-current (DC) voltage with little control over anything but the electrical potential. In contrast, control over the input voltage waveform (i.e. pulsing) in electrospraying offers greater control over the process variables. Poly(L-lactic acid) (PLLA) microspheres and microcapsules were successfully fabricated via pulsed-DC electrospray and dual-capillary electrospray, respectively. Core shell combinations produced include: Water/PLLA, PLLA/polyethylene glycol (PEG), and oleic Acid/PLLA. In this study, we designed a novel high-voltage pulse forming network and a set of new designs for coaxial electrospray nozzles. We also investigated the effect of the pulsed voltage characteristics (e.g. pulse frequency, pulse amplitude and pulse width) on the particle’s size and uniformity. We found that pulse frequency, pulse amplitude, pulse width, and the combinations of these factors had a statistically significant effect on the particle’s size. In addition, factors such as polymer concentration, solvent type, feed flow rate, collection method, temperature, and humidity can significantly affect the size and shape of the particles formed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Job seekers in resource-based economic settings like the Keweenaw Peninsula in Upper Michigan and the Nickel Basin surrounding Sudbury, Ontario faced many challenges, from the dangers of the job to corporate domination to the “boom and bust” nature of inevitably limited supplies of even “endless” natural riches. Adding to these many challenges in both settings was the employer view that you were best suited to certain tasks. This paper examines these expectations from “both” ends – how and why did employers see matters this way, and what did the “recipients” make of being cast in certain roles ? Did the newcomers also expect to earn their keep from a limited range of options ? While the last word on this issue awaits a much larger study, even a glance can inform both the scholar of resource settings and the ethnic historian about an important element of resource-based economies. This paper, then, examines the links between stereotype, preference, and necessity – to what extent did local populations fight, appreciate or succumb to expectation when “making a living.” As the title suggests, Finns get significant attention, as befits both settings under study. However, the paper looks to similar trends amongst a broad demographic swathe in each setting. Was “who” you were the crucial element in finding sustenance ? “Ethnic”, Aboriginal, or “established settler society” – what factors shaped economic expectations, choices and roles?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This document may be used as a template for creating project plans, the process by which members of the Michigan Technological University community may contribute content to Digital Commons @ Michigan Tech.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce a recursive bosonic quantization technique for generating classical PT photonic structures that possess hidden symmetries and higher order exceptional points. We study light transport in these geometries and we demonstrate that perfect state transfer is possible only for certain initial conditions. Moreover, we show that for the same propagation direction, left and right coherent transports are not symmetric with field amplitudes following two different trajectories. A general scheme for identifying the conservation laws in such PT-symmetric photonic networks is also presented.